

Stage 2 - Environmental Site Investigation 515 Crookwell Road, Kingsdale NSW 2580 Prepared for: Alimaco Pty Ltd

ST-01-1492 / ESI V1 Final 27th August 2022

K2 Consulting Group Suite 222 (Building B) 20 Lexington Drive, Bella Vista NSW 2153 Email: info@k2consultinggroup.com.au 1800 523 000

Document Summary					
Client	Alimaco Pty Ltd				
Title	Stage 2 - Environmental Site Investigation				
Address	515 Crookwell Road, Kingsdale NSW 2580				
Report No	ST-01-1492/ESI				
Version	V1 Final				
Date of issue	27 th August 2022				
Distribution	Alimaco Pty Ltd, K2's Electronic storage system				

Document Status							
Revision No	Prepared by	Reviewed by	Issue Date				
Revision 1 Final	Kannan Kaliappan	Dawit Bekele (PhD, PE)	27th August 2022				

Document Control			
Report prepared by	Kannan Kaliappan M.Eng CPEng Principal Environmental Consultant CEnvP ID: 1540		James
Report authorised by	Dawit Bekele (PhD, PE) Principal Environmental Scientist Certified Site Contamination Specialist CEnvP-SC (ID. SC41149)	CONJUNE CONJUNE	Rentig

A controlled copy of this report will be distributed to the Client and any parties that are authorised by the Client. The report is intended for the sole use of the Client and K2 does not accept any responsibility of other parties who may rely on this report. The report shall be read in full in conjunction with the appendices and other relevant documents. No section of this report may be removed or reproduced without K2's permission. K2 does not take ownership of any incorrect inference from this report and any clarification regarding the works undertaken.

All rights reserved. © K2 Consulting Group 2022.

K2 Environmental Services Pty Ltd (Trading as K2 Consulting Group)

ABN: 34630243908 Suite 222, Level 2 20B Lexington Drive, Bella Vista NSW 2153 info@K2consultinggroup.com.au

Contents

1.	INT	RODI	JCTION 6	; -				
2.	PRC	POSI	ED WORKS θ	; -				
3.	OBJECTIVES 6 -							
4.	SCC	PE O	νF WORKS θ	; -				
5.	SITE	E DES	CRIPTION 7	' -				
5	.1.	Suri	rounding Land Use ۶	s -				
5	.2.	Site	e Description ٤	\$ -				
6.	PRE	VIOU	JS INVESTIGATIONS) -				
7.	CON	NCEP	TUAL SITE MODEL 10) -				
8.	Fiel	d Inv	estigation Methodology 13	; -				
8	.1.	Soil	Investigation 13	; -				
8	.2.	Lab	oratory Analysis 14	- 1				
9.	SITE	E ASS	ESSMENT CRITERIA 15	, -				
9	.1.	Soil	Assessment Criteria 15	, -				
	9.1.	1.	Adopted site assessment criteria (SAC) 15	, -				
	9.1.	2.	Management Limits 16	; -				
	9.1.	3.	Ecological Investigation Levels (EILs) 16	; -				
	9.1.	4.	Asbestos in soils 17	' -				
	9.1.	5.	Acceptable statistical analysis 17	' -				
10.	RES	ULTS	AND DISCUSSION 18	\$ -				
1	0.1.	Fiel	d Observations 18	\$ -				
1	0.2.	Disc	cussion of Analytical Results18	\$ -				
11.	DAT	TA QL	JALITY INDICATORS ASSESSMENT 20) -				
1	1.1.	Pred	cision 20) -				
	11.:	1.1.	Duplicate samples 20) -				
12.	CO		SIONS 22	<u>!</u> -				
13.	REC	OMN	/IENDATIONS 23	5 -				
1	3.1.	Ider	ntified Data Gaps 23	; -				
14.	LIM	ΙΤΑΤΙ	IONS 24	4 -				
15.	REF	EREN	ICES 25	; -				

List of Tables

Table 1. Site Identification	7 -
Table 2. Summary of surrounding areas	8 -
Table 3. Amended Conceptual Site Model	11 -
Table 4. Site Assessment Criteria – HIL-A	15 -
Table 5. Site Assessment Criteria -Ecological Investigation Levels	17 -
Table 6. Summary of Chromium exceedance and ASLP concentration	19 -
Table 7. RPD comparison between primary sample and Blind Duplicate sample	21 -

List of Figures

 Figure 1. Aerial photograph of the subject areas on site - Areas of Environmental Concern (AEC)

 identified by the PSI (Civplan PSI 2017).

 Figure 2. Aerial photograph of the subject site with approximate borehole locations and chromium

 exceedance.

 - 26

List of Appendices

- Appendix I Aerial Photographs
- Appendix II Photographs
- Appendix III Soil Bore Logs
- Appendix IV Laboratory Results Summary
- Appendix V Laboratory Reports
- Appendix VI Pro-UCL Study

- 4 -

List of Abbreviations

ACM	Asbestos Containing Material
ACCALERA	
ASC NEPM	Assessment of Site Contamination – National Environmental Protection Measure
	(1999 amended 2013)
ASET	Australian Safer Environment & Technology Pty Ltd
ASRIS	Australian Soil Resource Information System
ASLP	Australian Leaching Procedure
BH	Borehole
BGL	Below ground level
BR	Blind replicate
BTEXN	Benzene, Toluene, Ethylbenzene, Xylene and Naphthalene
CLR	Contaminated Land Register
COC	Chain of Custody
CoPC	Contaminants of Potential Concern
CSM	Conceptual Site Model
DBYD	Dial Before You Dig
DDD	Dichloro-Diphenyl Dichloroethane
DDE	Dichloro-Diphenyl Dichloroethylene
DDT	Dichloro-Diphenyl Trichloroethane
DP	Deposited Plan
EIL	Ecological Investigation Levels
ESI	Environmental Site Investigation
GPR	Ground Penetrating Radar
HIL	Health Investigation Levels
HSL	Health Screening Levels
LGA	Local Government Area
LOR	Limit of Reporting
m AHD	meters, Australian Height Datum
NATA	National Association of Testing Authorities
NSW EPA	New South Wales Environment Protection Authority
ОСР	Organochloride Pesticides
OEH	Office of Environment and Heritage
OPP	Organophosphate Pesticides
PAH	Polycyclic Aromatic Hydrocarbons
РСВ	Polychlorinated Biphenyl
PID	Photo-ionisation detector
QA	Quality Assurance
QC	Quality Control
RPD	Relative Percentage Difference
SAC	Site Acceptance Criteria
SPR	Source-Pathway-Receptor
SWMS	Safe Work Method Statement
TRH	Total Recoverable Hydrocarbons
UCL	Upper Confidence Level

1. INTRODUCTION

K2 Consulting Group (K2) was engaged by Alimaco Pty Ltd (Client) to undertake a Stage 2 - Environmental Site Investigation (ESI) of the property located at 515 Crookwell Road, Kingsdale NSW 2580 (hereinafter referred to as 'the site'). The site can be identified as Lot 103 and Lot 104 of DP 1007433 and located within the Goulburn-Mulwaree Council Local Government Area (LGA). The site is proposed to be developed into twenty-four (24) low-density rural residential subdivisions/allotments.

This report has been prepared in general accordance with provisions for an Environmental Site Investigation as defined within the NSW EPA (2020) Guidelines for Consultants Reporting on Contaminated Sites and National Environmental Protection (Assessment of Site Contamination) Measure 1999 (ASC NEPM, 2013) and other relevant best industry practices and guidelines.

2. PROPOSED WORKS

The proposed development at the site involves a twenty-four (24) lot rural residential subdivision and the construction of associated infrastructure such as roads and utilities. The existing structures at the site such as the residential buildings, sheds and other infrastructure will be demolished and disposed off-site to assist in proposed development. It is noted that cut and fill works may be undertaken to level ground at the site. The scope of work doesn't include hazardous material inspection at the existing buildings.

3. OBJECTIVES

The objectives of the site investigation for contamination include:

- Review previous site investigations conducted by other consultants;
- Refine the Conceptual Site Model (CSM) from the previous site investigation and update the CSM for any identified source of contamination exposure pathway and receptor linkages
- Undertake limited intrusive site investigation including soil sampling to identify potential contaminations; and
- Evaluate suitability of the site for the proposed development in accordance with the NEPM 2013 and other relevant guidelines.

4. SCOPE OF WORKS

The scope of works undertaken to prepare the Stage 2 - Environmental Site Investigation report included the following:

- Preparation of Safe Work Method Statement (SWMS);
- Review of available desktop information (all information provided by the client to collate a CSM);
- Review of previous Preliminary Site Investigation (PSI) undertaken at the site by other consultants;
- Preparation of a limited soil sampling program;
- Undertake a Dial Before You Dig (DBYD) search before commencing site works;
- Collection of soil samples from twelve (12) locations across the areas of environmental concerns (AEC) identified during the previous report (**Figure 1**). The soil sample collected to a depth of 0.2 m to 1.0 m Below Ground Level (BGL). The proposed sampling density does not

meet the minimum number of sampling required as per the NSW EPA (2022) and sampling locations are selected using a professional judgemental sampling pattern;

- Laboratory analysis of selected soil samples for contaminants of potential concerns (CoPC) including Heavy metals/metalloids (Arsenic, Cadmium, Chromium, Copper, Lead, Nickel, Mercury, and Zinc), Total Recoverable Hydrocarbons (TRH), Polycyclic Aromatic Hydrocarbons (PAH), Benzene, Toluene, Ethylbenzene, Xylenes and Naphthalene (BTEXN), Organo Chlorine and Organo Phosphate pesticides (OCP / OPP), and Asbestos (presence or absence);
- Analysis of selected eight (8) soil samples for Australian Standard Leaching Procedure (ASLP) test metal; and
- Preparation of this Stage 2 Environmental Site Investigation (ESI) report in accordance with adopted guidelines.

5. SITE DESCRIPTION

The site is located at 515 Crookwell Road, Kingsdale NSW 2580 (Lot 103 and Lot 104 on DP 1007433) and is currently zoned RU6 C3-Environmental management under the Goulburn-Mulwaree Local Environmental Plan (LEP) 2009. Compacted earth road base was observed in the driveway section leading from Crookwell Road and the remaining access roads were made of gravel and earth. Imported fill materials may be present under the constructed areas including the residential building and sheds. Topsoil was observed in the other AEC investigated. Areas in other sections of the site outside the AEC were not inspected and are outside the scope of this investigation. Refer to **Table 1** below for the site summary. The site location and boundaries are presented in **Appendix I**.

Item	Description
Client	Alimaco Pty Ltd
Site Address	515 Crookwell Road, Kingsdale NSW 2580
Current Zoning	RU6 C3 – Environmental Management
Legal Description	Lot 103 and Lot 104 on DP 1007433
Local Government Authority	Goulburn-Mulwaree Council
Site Area (ha)	55 Approx.
Elevation (m AHD)	Between 670 along the South to 682 along the north
Geographical Location	34°42′58″ S 149°42′13″ E
(GDA94-MGA56)	

Table 1. Site Identification

5.1. Surrounding Land Use

A summary of surrounding land uses is provided in **Table 2** below.

Table 2. Summary	of surrounding areas
------------------	----------------------

Surrounding areas	Description
Eastern section	Crookwell Road is the eastern boundary of the site beyond which is Sparse rural dwellings and paddock land.
Western section	The western boundary is defined by a cattle fence. Paddock land beyond the western boundary. Lake Sooley is located approximately 1 km to the west of the site.
Northern section	The northern boundary is defined by a cattle fence. Paddock land and sparse rural dwellings beyond.
Southern section	The southern boundary is defined by a cattle fence. Paddock land and sparse rural dwellings. The Wollondilly River has located approximately 1.8 km to the south of the site.

5.2. Site Description

The following site features were observed during the site walkover inspections and are summarised below:

- An unpaved driveway was observed to traverse from Crookwell Road on the eastern boundary to the residential property;
- A residential house was located centrally along the eastern section of the site. The inside of the house was not inspected. The house is a stand-alone residential building and is not attached to any sheds;
- The site was predominantly used as a sheep farm;
- A workshop shed was located adjacent to the house. The workshop was primarily used for maintenance of automobile and farm equipment and related storage of items including chemicals such as oils, and herbicides;
- A sheep mustering dock was located in the northern section of the site, which contains two (2) sheds;
- Hay storage shed, and a silo was observed to the west of the workshop shed;
- Another small shed was located along the western boundary of the site;
- Multiple fence lines and cattle grids were observed within the site;
- Extended driveways and tracks were observed leading to multiple storage sheds and silos located on the site. The remaining surfaces on site were grassed paddock land;
- Three (3) surface water dams constructed from soil embankments were observed on-site. The water in the dam located to the south-eastern section of the property appeared to contain a pinkish layer of film. No further investigation was undertaken during this assessment;
- Mature trees were noted across the property;
- The site is elevated along the northern section and generally slopes down towards the southern and western sections. Any surface water along the northern and eastern sections of the site will eventually drain into the Wollondilly River to the south of the site;

- Stockpiles of demolished construction material and timber were observed along the northwest corner of the site;
- Two (2) above-ground fuel storage tanks and agricultural machinery were observed to the north of the workshop shed. The volume of the fuel tanks was not determined during the inspection. Please refer to Photos.13 and 14 for the location and size of the tanks;
- IBC containers of unknown liquids were observed along AEC 2 and AEC 3. IBCs were partially filled with these unknown liquids and hence a volume could not be determined. Chemical containers were observed to be present at multiple locations on-site mainly along the driveway footprint in the eastern section of the site;
- An underground septic system and soil irrigation area were noted to the east of the house at AEC 2, however, no further investigation was undertaken as K2 did not have any plans of underground utilities or pipelines in this area;
- Power lines were noted to traverse through the site in a north-south direction; and
- Groundwater bores were noted along the eastern section of the site; however, the total
 number of bores on-site was not inspected. Water storage tanks were observed at multiple
 locations on-site, it is assumed that the extracted groundwater is stored in these tanks for
 farming purposes. Sub-surface water lines were reported to be present on-site, however, no
 drawings indicating the lines were available at the time of inspection.

Relevant site features are presented in Figure 1 of this report.

6. PREVIOUS INVESTIGATIONS

Preliminary Site Investigation, Report No: 20027CC-001, dated 28th October 2021 (Civplan PSI 2021):

CivPlan Pty Ltd (CivPlan) prepared a PSI for the site and a summary of the report is presented below:

- "Historical information for the property and onsite observations indicate that potentially contaminating activities may have occurred on site which may have impacted the site. The potential contaminants of concern associated with these activities, and the potential areas of environmental concern (AECs) are defined in the Conceptual Site Model (CSM);
- Potential for on-site use of pesticides, primary effluent disposal area, vehicle/equipment storage and maintenance activities, pre-1998 dwelling, shed and structure construction materials and importation of fill materials for the driveway which may have contained contaminants entrapped at the source of the fill; and
- Four AECs have been identified (refer to **Figure 1**) and will require further investigation both pre and post-demolition of the existing structures. The remainder of the site is of the MODERATE likelihood for any contamination due to agricultural land use activities and will also require additional investigation. "

The recommendations in the report by CivPlan are summarised below:

• "Due to the historical use of the site resulting in a moderate likelihood of any contamination, it is recommended that a Detailed Site Investigation (DSI) is undertaken to determine if the site is fit for its intended purpose;

- To address potential AEC and CoPC, an intrusive soil sampling regime is recommended to be conducted. The sampling regime must be in accordance with the following statutory guideline documents:
 - Consultants reporting on contaminated land, NSW EPA 2020;
 - National Environmental Protection (Assessment of site contamination) Measure, NEPM (2013)."

7. CONCEPTUAL SITE MODEL

A conceptual site model (CSM) is a tool that relates identified impacts to potentially contaminated source areas based on interpretation of the geology/hydrogeology and contaminant migration pathways and potential human and environmental receptors. A CSM provides a discussion of the nature and extent of impacts, and relevant source-pathway-receptor (SPR) linkages.

A CSM was prepared by CivPlan (<u>Civplan PSI 2021</u>). **Table 3** below presents the updated CSM based on additional information and investigation undertaken by K2.

Source	Contaminants of Potential Concern (CoPC)	Affected Areas	Primary Release Mechanism	Secondary Release Mechanism	Potential Impacted Media	Exposure Pathways	Potential receptors*	The Potential risk of Complete exposure pathway
Imported fill material underneath concrete hardstand areas under the sheds and from compacted driveways within the site	TRH, BTEX, PAH, Heavy metals, OCP, OPP, Asbestos	Across the site, with emphasis on the areas adjacent to the AECs	Placement of fills material onsite	Leaching and migration of contaminants via surface runoff, rainwater infiltration during historical land use, or disturbance during future development	Soil, groundwater, and surface water run-off	Dermal contact, inhalation of dust/vapour, ingestion, surface water, and groundwater migration.	Current residents, future residents, future workers, neighbouring residents, and construction personnel involved in the development of the site	Complete
							Groundwater	Complete
Storage of chemical containers and IBCs of unidentified liquids on site	TRH, BTEX, PAH, OCP, OPP, PCB, Heavy metals, Asbestos	Across the site, with emphasis on the areas adjacent to the AECs	Release of any hydrocarbon-based oils and fluids	Leaching and migration of contaminants via surface runoff, rainwater infiltration during historical land use, or disturbance during future development	Soil, groundwater, and surface water	Dermal contact, inhalation of dust/vapour, ingestion, surface water, and groundwater migration.	Current residents, future residents, future workers, neighbouring residents, and construction personnel involved in the development of the site	Complete
							Groundwater	Complete
Fuel and oil spillage from maintenance, parking and refuelling of motor vehicles on site	TRH, BTEXN, PAH, Heavy metals	Across the site, with emphasis on the areas adjacent to the AECs	Release of any hydrocarbon-based oils and fluids, metals from the vehicles	Leaching and migration of contaminants via surface runoff, rainwater infiltration during historical land use, or disturbance during future development	Soil, groundwater, and surface water	Dermal contact, inhalation of dust/vapour, ingestion, surface water and groundwater migration.	Current residents, future residents, future workers, neighbouring residents, and construction personnel involved in the development of the site	Complete
							Groundwater	Complete
Historical usage of pesticides onsite and adjacent properties	TRH, BTEXN, PAH, OCP, OPP, Heavy metals	Across the site, with emphasis on the areas adjacent to the AECs	Use of pesticides for landscaping/land management activities	Leaching and migration of contaminants via surface runoff, rainwater infiltration during historical land use, or disturbance during future development	Soil, groundwater, and surface water	Dermal contact, inhalation of dust/vapour, ingestion, surface water and groundwater migration.	Current residents, future residents, future workers, neighbouring residents, and construction personnel involved in the development of the site	Complete
							Groundwater	Complete
Runoff from the septic effluent irrigation system	TRH, BTEXN, PAH, Heavy metals. Microbial contamination	Across the site, with emphasis on the areas adjacent to the AECs	Septic effluent irrigation system presents on site	Leaching and migration of contaminants via surface runoff, rainwater infiltration during historical land use, or disturbance during future development	Soil, groundwater, and surface water	Dermal contact, inhalation of dust/vapour, ingestion, surface water and groundwater migration.	Current residents, future residents, future workers, neighbouring residents, and construction personnel involved in the development of the site	Complete
							Groundwater	Complete

Table 3. Amended Conceptual Site Model

K2 Consulting Group

Stage 2 - Environment Site Investigation

515 Crookwell Road, Kingsdale NSW 2580

К2

Source	Contaminants of Potential Concern (CoPC)	Affected Areas	Primary Release Mechanism	Secondary Release Mechanism	Potential Impacted Media	Exposure Pathways	Potential receptors*	The Potential risk of Complete exposure pathway
Buildings onsite	PCB, Metals especially lead in paints, asbestos	Across the site, with emphasis on the areas adjacent to the building structures	Building material used on-site during construction	Leaching and migration of contaminants via surface runoff, rainwater infiltration during historical land use, or disturbance during future development	Soil, groundwater, and surface water	Dermal contact, inhalation of dust/vapour, ingestion, surface water and groundwater migration.	Current residents, future residents, future workers, neighbouring residents, and construction personnel involved in the development of the site	Complete
							Groundwater	Complete
Above-ground fuel storage onsite	TRH, BTEXN, PAH, Heavy metals	Across the site, with emphasis on the areas adjacent to the AECs	Release of any hydrocarbon-based oils and fluids from the storage tanks	Leaching and migration of contaminants via surface runoff, rainwater infiltration during historical land use, or disturbance during future development	Soil, groundwater, and surface water	Dermal contact, inhalation of dust/vapour, ingestion, surface water and groundwater migration.	Current residents, future residents, future workers, neighbouring residents, and construction personnel involved in the development of the site	Complete
							Groundwater	Complete
Stockpiles of demolished construction waste materials onsite	TRH, BTEXN, PAH, Heavy metals, asbestos.	Across the site, with emphasis on the areas adjacent to the AECs	Release of contaminants from the materials onto the soils	Leaching and migration of contaminants via surface runoff, rainwater infiltration during historical land use, or disturbance during future development	Soil, groundwater, and surface water	Dermal contact, inhalation of dust/vapour, ingestion, surface water and groundwater migration.	Current residents, future residents, future workers, neighbouring residents, and construction personnel involved in the development of the site	Complete
							Groundwater	Complete
Adjacent sites – Goulburn timber works are located upstream of the site	Heavy metals in particular Chromated copper arsenate	Across the site	Potential wood treatment activities	Leaching and migration of contaminants via surface runoff, rainwater infiltration during historical land use, or disturbance during future development	Soil, groundwater, and surface water	Dermal contact, inhalation of dust/vapour, ingestion, surface water and groundwater migration.	Current residents, future residents, future workers, neighbouring residents, and construction personnel involved in the development of the site	Complete
							Groundwater	Complete

Note: *The proposed land use for large rural residential development may include continuing use as sheep graziers in parts of the subdivided lots.

515 Crookwell Road, Kingsdale NSW 2580

8. Field Investigation Methodology

8.1. Soil Investigation

A total of nine (9) boreholes were drilled with the assistance of a hand auger for the top 0.2 m BGL and an excavator-mounted solid flight auger was used for the deeper samples. The sampling locations were based on a judgemental sampling pattern based on review information from the previous PSI report and site walkover inspection. Twenty (20) primary and one (1) intra-laboratory duplicate soil samples were collected and analysed for the CoPCs shown in **Table 3**. In addition, two (2) surface soil samples were collected and analysed for the CoPC. All samples were analysed at Eurofins |MGT (Eurofins), an accredited laboratory by the National Association of Testing Authorities (NATA), Australia.

Generally, soil samples were collected from 0.0 m - 0.2 m BGL in the topsoil and underneath natural soils below or from soils where apparent contamination or change in the soil profile was noted. Natural soils (Silty clay) were generally encountered at varying depths at the boreholes between 0.2 m BGL to 0.7 m BGL. No refusal was encountered in the boreholes undertaken. Ground conditions encountered during the site investigation are generally consistent with the information reviewed as part of the PSI.

Borehole logs were prepared as per the Australian Standard Geotechnical Site Investigations AS 1726-1993, presented in **Appendix III**. Field observations and visual soil indicators such as staining, odour, and discolouration, were considered during the collection of samples and are recorded in the soil bore logs **(Appendix III)**. No Photoionization Detector (PID) readings were taken as no indications such as odour and staining were observed during drilling. There was no gross contamination observed at the surface soil during the site inspection.

A Dial Before You Dig (DBYD) was undertaken to ascertain the services underground and finalise the sampling plans accordingly. Several underground water pipes are reported to traverse through the site and hence hand auguring to 0.2 m BGL depth to avoid pipe cutting prior to the mechanical auger. No underground utilities were damaged during the investigation.

Sampling Procedures

Soil samples were collected using appropriate personal protective equipment (PPE) including wearing disposable nitrile gloves, which were changed between each sample. Soil samples marked for chemical analysis were carefully placed in glass jars supplied by the laboratory. The jars were filled with soil samples to minimise any headspace.

Approximately 30 g - 50 g of soils were placed in zip lock bags for asbestos analysis (presence/absence method).

All field observations were noted in the field sheet using the chain of custody (COC) including, unique sample identification, sample description, sampling coordinates, soil profiles, and borehole numbers (appendix V).

Sample Transportation

The jars were placed in an esky with chilled ice for sample preservation and transportation. The field forms were completed, and the samples were then transferred to the laboratories under (COC) forms.

All samples will be stored in the laboratories for a specified period following the receipt of samples.

Decontamination Procedures

The sampling tools were decontaminated with Decon 90 detergent spray and rinsed with deionised water to ensure no cross-contamination occurs from other sampling locations. This decontamination procedure was followed between the sampling locations within the site. Any excess soils collected during the investigation were used to backfill the borehole and reinstated the ground. No soils from the sampling program were taken off-site for disposal.

8.2. Laboratory Analysis

Chemical Analysis

A total of twenty (20) primary soil samples from test boreholes and two (2) surface samples were collected during field investigations and sent to Eurofins for analysis of the CoPC.

In addition, one (1) blind intra-laboratory duplicate sample (ST-01-1492-BR1) was sent to Eurofins for QA/QC purposes.

Asbestos Analysis

Four (4) primary and one (1) blind duplicate soil samples were sent to Australian Safer Environment and Technology (ASET) for analysis of asbestos in soils (presence/absence method). One (1) fibrous cement sheet sample collected from a debris stockpile was also sent to ASET for analysis of asbestos. The samples were tested for the presence/absence of asbestos in soils (AS 4964-2004 method).

Additional Analysis

One (1) sample (Sample ID: ST-01-1492-BH08- 0.4m) was analysed for % Clay, pH, Conductivity, and Cation Exchange Capacity (CEC) by Eurofins for the assessment of site – specific EILs.

9. SITE ASSESSMENT CRITERIA

9.1. Soil Assessment Criteria

The adopted site assessment criteria (SAC) used in this investigation are as per the Assessment of Site Contamination, National Environment Protection (Assessment of Site Contamination) Measure (1999 as amended 2013).

9.1.1. Adopted site assessment criteria (SAC)

Based on the current and the proposed land use (sub-division into 24 low-density residential rural allotments), health investigation level (HIL) A - Residential land use with garden/accessible soil was considered as the Tier 1 screening criteria relevant to the proposed development.

Health Screening Levels (HSLs) were established for specific petroleum hydrocarbon contaminations to assess the human health risk from vapour inhalation and direct contact pathways. The HSLs is a site-specific depending on the physio-chemical properties of subsurface soil at the site, generally the soil at the site is characterised as Clay (clay, clay loam, and silt loam) and are summarised in the SAC, however values for sand is used here as a conservative criteria in **Table 4**.

Analytes	Health Investigation		eening Levels ential (A) ² Direct Contact	Management Limits (A) Fine soils (mg/kg)	
	Levels (A) ¹	(mg/kg) ³	(mg/kg)		
Arsenic (total)	100	-	-	-	
Cadmium	20	-	-	-	
Chromium (Total)	100	-	-	-	
Copper	7000	-	-	-	
Lead	300	-	-	-	
Mercury (inorganic)	200	-	-	-	
Nickel	400	-	-	-	
Zinc	8000	-	-	-	
Polycyclic aromatic hydrocarbons (PAHs)	300	-	-	-	
Carcinogenic PAHs (As BaP TEQ)	3	-	-	-	
Phenols	3000	-	-	-	
DDT+DDE+DDD	260	-	-	-	
Aldrin and Dieldrin	7	-	-	-	
Chlordane	50	-	-	-	
Endosulfan	300	-	-	-	
Endrin	10	-	-	-	
Heptachlor	7	-	-	-	
Hexachlorobenzene	10	-	-	-	
Methoxychlor	400	-	-	-	
Chlorpyrifos	170	-	-	-	
Benzene	-	0.6	100	-	
Toluene	-	190	14000	-	
Ethyl Benzene	-	NL	4500	-	
Xylene	-	45	12000	-	

Table 4. Site Assessment Criteria – HIL-A

-	3	1400	-
-	50	4400	800
-	130	3300	1000
-	-	4500	3500
-	-	6300	10000
	- - - - -	- 130	- 50 4400 - 130 3300 - - 4500

Notes:

1. HIL A - Residential with garden/accessible soil (homegrown produce <10% fruit and vegetable intake, (no poultry), also includes children's daycare centres, preschools, and primary schools.

2. Health Screening Levels (HSL) for surface soils 0 m to <1 m where applicable. NL - Not Limiting.

3. Clay (clay, clay loam and silt loam) criteria were adopted.

9.1.2. Management Limits

Schedule B1 of NEPM ASC 2013 includes 'management limits' to avoid or minimise any potential impacts from petroleum hydrocarbon fractions (F1, F2, F3 and F4) and referred indicate the maximum acceptable values above which a site-specific assessment is required. The management limits apply to all soil depths if any petroleum hydrocarbon contamination is identified at the site. Management limits should be considered to identify the presence of phase-separated hydrocarbons (light non-aqueous phase liquids - LNAPL), gross contamination, any potential fire or explosive risks and damage to buried infrastructure and aesthetics of the site.

Based on the current and future development, the Management Limits adopted during this investigation are 'Residential, parkland and public open spaces and are summarised in the SAC, see **Table 4**.

9.1.3. Ecological Investigation Levels (EILs)

Ecological Investigation Levels (EILs) and Added Contaminant Limits (ACLs), where appropriate, have been derived for selected metals and organic compounds and are applicable for assessing risk to terrestrial ecosystems (NEPC, 2013).

Site-specific EILs were calculated based on the equation as below:

EIL=ABC (ambient background concentration) + ACL (added contaminant limit)

The Interactive (Excel) Calculation Spreadsheet was used for calculating site-specific EIL for these contaminants. Input values included were based on site-specific testing undertaken on the sample (sample ID: ST-01-1492-BH08-0.4m):

- A low traffic volume in NSW;
- Conservative organic carbon content of 1% in the absence of site-specific test results;
- Clay content of 49%;
- A pH of 4.5; and
- A cation exchange capacity (CEC) of 19 meq/100g.

In addition, given the site history, the contamination was considered to be aged (i.e. not fresh). The EIL is presented in **Table 5**.

One (1) sample collected from BH2 at 0.2 m BGL (sample ID: ST-01-1492-BH02-0.2m) was analysed for heavy metals and is considered to be the background concentration for this EIL study. However, it is

recommended that additional samples are collected in the future to ascertain a statistical mean background reading.

Analyte	ABC (mg/kg)	ACL	EIL (mg/kg)
Arsenic	4.3	100	100
Copper	17	60	75
Nickel	30	260	290
Chromium III	81	400	750
Lead	22	1100	1100
Zinc	49	120	170
Naphthalene	<lor< td=""><td>170</td><td>170</td></lor<>	170	170
DDT	<lor< td=""><td>180</td><td>180</td></lor<>	180	180

Table 5. Site Assessment Criteria -Ecological Investigation Levels

9.1.4. Asbestos in soils

Asbestos in soils was analysed using the Australian Standard AS 4964-2004 (Method for the qualitative identification of asbestos in bulk samples) by a NATA accredited laboratory. The presence of asbestos was used as an indication to assess the soils for any risks from asbestos. If any samples were identified to be positive or if any Asbestos Containing Material (ACM) is observed in soils, a detailed asbestos investigation is recommended.

9.1.5. Acceptable statistical analysis

The soils with contaminant concentration that meets the following criteria will be considered acceptable:

- The maximum concentration of analytes in all samples meet the adopted acceptance criteria; or
- The 95% UCL average concentration of each contaminant is below the adopted acceptance criteria; and
- No individual exceedance is greater than 2.5 times the acceptance criteria.

A location will be a 'hot spot' and requires further management, including additional assessment and remediation if:

- The concentration of a contaminant is greater than 2.5 times the acceptable adopted criteria; and
- The 95% UCL average concentration is above the adopted acceptance criteria

10. RESULTS AND DISCUSSION

10.1. Field Observations

In general, fill material was observed at boreholes BH1, BH3, BH7 and BH8 to a maximum depth of 0.7 m BGL. The fill materials comprised of road base and gravels which appeared to have been imported from construction demolished waste material for the construction of access roads. Natural soils were encountered at varying depths at the boreholes investigated, which comprised silty clay. In the remaining boreholes, organic-rich topsoil was encountered at 0.0 m - 0.2 m BGL. No groundwater was encountered in the boreholes during sampling. Please refer to the bore logs for the depth of fill and natural soils at each test location.

10.2. Discussion of Analytical Results

A summary of laboratory results and chain of custody is provided in QA/QC Laboratory certificates are presented in **Appendix IV**.

Metals /Metalloids

The concentration of heavy metals (Arsenic, Cadmium, Copper, Lead, Nickel, Mercury, and Zinc) was below the adopted SAC for HIL-A except Chromium:

Chromium:

- A total of twelve (12) out of Twenty (20) primary samples exceeded the adopted SAC of HIL-A for the total chromium (100 mg/kg);
- No sample concentration exceeded the site adopted EIL concentration of 750 mg/kg for chromium;
- The concentration of chromium at borehole BH01 at 1.0 m BGL (sample ID: ST-01-1492-BH01 (1.0m)) was recorded as 250 mg/kg, however, did not exceed the 250 % of SAC, hence is not considered as a hotspot;
- A ProUCL statistical analysis undertaken on the samples indicated the student-t UCL of 139 mg/kg, which is above the HIL-A of 100 mg/kg (Refer to **Appendix VI**);

The soil sample exceeding the adopted SAC of HIL-A (100 mg/kg) for the concentration of total chromium is presented in **Table 6** below.

Furthermore, an ASLP analysis was undertaken on eight (8) samples and the result indicated in **Table 6**. The results of the ASLP analysis indicated the following:

- Hexavalent chromium was detected above the LOR (0.005 mg/L) in four (4) of the eight (8) samples analysed. The deepest soil sample analysed was collected at 0.4 m BGL (sample IDs-ST-01-1492-BH02-0.4m and ST-01-1492-BH04-0.4m), which indicates detection of Hexavalent and Trivalent chromium considered as evident leaching of chromium (VI) from the surface soils;
- Trivalent chromium was observed above the LOR (0.005 mg/L) in six (6) out of the eight (8) samples analyses. The deepest sample analysed was collected from 0.4 m BGL (sample ID- ST- 01-1492-BH02-0.4m, ST-01-1492-BH04-0.4m) which indicates potential leaching of chromium (III) from the soils.

Borehole sample ID	Depth (m)	HIL-A	EIL	Chromium concentration (mg/kg)	ASLP concentration Chromium- hexavalent (mg/L)	ASLP concentration Chromium- trivalent (mg/L)	
		mg/kg	mg/kg		LOR 0.005 mg/L	LOR 0.005 mg/L	
ST-01-1492-	0.2			190	<0.005	0.35	
BH01	0.7			150	-	-	
DIIUI	1.0			250	<0.005	<0.05	
ST-01-1492- BH02	0.4		100 750	110	0.010	0.18	
ST-01-1492-	0.2			140	<0.005	0.16	
BH03	0.5				150	-	-
ST-01-1492-	0.2	100		170	-	-	
BH04	0.4			110	0.011	0.20	
ST-01-1492- BH08	0.2			160	0.014	0.11	
ST-01-1492-	0.2			130	0.016	0.044	
BH11	0.4			190	-	-	
ST-01-1492- SS02	0.0			140	<0.005	<0.05	

Table 6. Summary of Chromium exceedance and ASLP concentration

TRH/BTEX

The concentrations of TRH/BTEX were below the laboratory Limit of reporting (LOR), the adopted SAC and the management limits.

<u> PAH</u>

The concentrations of all PAH were below the laboratory LOR and hence were below the adopted SAC and the management limits.

OCP/OPPs

The concentrations of all OCP/OPPs were below the laboratory LOR and the adopted SAC.

<u>Asbestos</u>

No ACM fragments were observed on-site during the site walkover or the soil drilling program. No asbestos was detected in any of the soil samples presented to the laboratories for analysis. Based on field observation and laboratory analysis, it can be concluded that no asbestos was detected in the investigated area. If any fragments or any asbestos in other forms are detected in the soils onsite all works should be ceased and the unexpected finds procedure as per **section 13** shall be implemented immediately.

11. DATA QUALITY INDICATORS ASSESSMENT

11.1. Precision

11.1.1. Duplicate samples

Blind duplicate samples were used to identify any variation in analyte concentration from samples collected from the same sampling point and ensure the repeatability of the laboratory's analysis method. A split duplicate sample was collected to determine the analytical proficiency of the laboratories.

The acceptance criteria for quality control samples as stipulated in AS4482.1-2005 indicates that a 30-50% range of the mean concentration of the analyte (RPD) is acceptable with the below criteria adopted for this purpose:

- RPD 30% for organics and RPD 50% for inorganics if concentration greater than or equal to 10x the laboratory Detection Limit (LOR);
- No limit if the primary and duplicate concentration is less than 10 x the LOR; and
- If both sample values are less than the LOR, the RPD is not calculated

A summary of the RPD between the primary sample (ST-01-1492-BH08 (0.2m)) and the duplicate sample (ST-01-1492-BR1) is provided in Table 7 below. No asbestos was detected in the primary and blind duplicate samples.

The surrogate spikes undertaken by the laboratory for the contaminants of potential concern meet the control limits of 50-150%. A review of the holding times of the analytes indicated that all samples were provided to the laboratory under suitable cold chain conditions and within the holding times prescribed. The RPDs and the lab comments indicate that sample collection and handling have been undertaken in accordance with the acceptable limits and no anomalies were detected. Standard analytical methods used during this investigation were accredited by NATA. Eurofins Laboratory was used as a primary laboratory for chemical analysis. ASET was used as the primary laboratory for asbestos analysis in the soil samples. All chain of custody and field documentation was reviewed. The samples were collected by an experienced field consultant and soil profiles and other observations were noted during the investigation.

As per NSW EPA (2020) Contaminated Land Guidelines - Consultants Reporting on Contaminated Land, One (1) intra-lab duplicate sample should be collected for every ten (10) primary samples and one (1) inter-lab sample should be collected for every twenty (20) samples , however in this investigation this criteria was not met as the soil sampling program planned was a preliminary and a limited assessment. Future investigations will be designed to meet this criteria.

The analysis of the QA/QC program indicates that the data obtained from this investigation undertaken by K2 Consulting Group can be considered reliable and representative of the soil conditions on-site during the time of sampling.

			mples		
Analyte	LOR	ST-01-1492- BH08 (0.2m)	ST-01-1492-BR1	RPD%	DQI met
Arsenic	2	30	18	50	Yes
Cadmium	0.4	<0.4	< 0.4	NA	Yes
Chromium (total)	5	160	130	21	Yes
Copper	5	14	12	15	Yes
Lead	5	31	28	10	Yes
Mercury	0.1	<0.1	<0.1	NA	Yes
Nickel	5	11	10	10	Yes
Zinc	5	21	26	21	Yes
Benzene	0.1	<0.1	<0.1	NA	Yes
Toluene	0.1	<0.1	<0.1	NA	Yes
Ethylbenzene	0.1	<0.1	<0.1	NA	Yes
Xylene	0.3	<0.3	<0.3	NA	Yes
Benzo(a)pyrene	0.5	<0.5	<0.5	NA	Yes
Total PAH	0.5	<0.5	<0.5	NA	Yes
TRH C6-C10	20	<20	<20	NA	Yes
TRH C10-C16	50	<50	<50	NA	Yes
TRH C16-C34	100	<100	100	NA	Yes
TRH C34-C40	100	<100	<100	NA	Yes

Table 7. RPD comparison between primary sample and Blind Duplicate sample

NA- Analyte concentrations below LOR and hence no RPD was calculated

12. CONCLUSIONS

The below discussion is based on a site walkover inspection, a review of publicly available information, a review of previously available reports and the laboratory results from the soil samples collected during the investigation.

- Among the twenty (20) soil samples analysed for various contaminants of concern, twelve (12) soil samples exceeded the site assessment criteria (HIL-A) for total chromium. The ASLP leaching analysis undertaken in eight (8) representative samples indicated there is a potential for both trivalent and hexavalent chromium to leach from the soil matrix;
- Statical analysis UCL using ProUCL analysis for total chromium was undertaken on twenty (20) results and the 95 % UCL Student-t values were 139 mg/kg which exceeds the HIL A criteria of 100 mg/kg;
- No asbestos was detected in any of the soil samples analysed;
- One (1) fibrous cement sheet sample collected from a construction debris stockpile did not record the presence of asbestos;
- Data quality assessment undertaken on the samples indicates that the samples and the field procedures met the Data Quality Indicators according to Eurofins Laboratory Quality Control acceptance criteria;
- RPDs between the primary sample (ST-01-1492-BH08 (0.2m)) and duplicate sample (ST-01-1492-BR1) were calculated, and it is noted that the RPDs of these samples were below the allowed criteria; and
- The laboratory analytical procedures met the laboratory Data Quality Indicators and adopted criteria.

K2 Consulting Group was advised that the proposed development at the site involves a twenty-four (24) lot rural residential subdivision and the construction of associated infrastructure such as roads and utilities. The existing structures at the site such as the residential buildings, sheds and other infrastructure will be demolished and disposed off-site to assist in proposed development. Consequently, require further investigation both pre and post-demolition of the existing structures.

K2 has been advised that cut and fill earth works may be undertaken to level ground at the site. K2 Recommends further sampling the recommended sampling density for site characterisation as per NSW EPA (2022) prior to moving soil on-site and/or transported off-site. Based on the site history review and site walkover, it is considered that there is a moderate to high potential for site contamination from one or more of the identified potential contamination sources (see Section 7) and it is concluded that the environmental and human health risk is high. This report does not warrant the absence of contamination at the remaining area at the site._

13. RECOMMENDATIONS

13.1. Identified Data Gaps

K2 Consulting recommends the following data gaps are addressed to assess the suitability of the site for the proposed development:

- The site investigation is limited only to AECs identified in the previous PSI undertaken by CivPlan. Consistent with the CivPlan, K2 recommends additional investigation of the remainder of the site for any contamination due to agricultural land use activities and the presence of fill materials;
- If any unexpected finds-including but not limited to foreign materials including building materials, asbestos, materials buried under the surface of the soils, hydrocarbon-based materials or unpleasant fill materials are encountered on_site during the development works, all works shall cease, and the contaminated land consultant shall be contacted immediately for further advice;
- Both hexavalent and trivalent chromium has a potential to leach from the soil matrix as shown in elevated detections in the deeper soil samples (BH02/0.4 and BH4/0.4) as well as in the ASLP test results. Groundwater assessment is recommended to ensure that the groundwater is safe for the present and future use of the site. The site inspection identified on-site existing groundwater extraction bores, the K2 recommends testing for the exiting bores and further investigation of groundwater contamination using additional monitoring bores installed at strategic locations and monitoring for a period of time;
- Sampling and analysis of surface water from surface water dams across the site. This will assist in the dam decommissioning works, where the soils and sediments can then be classified for future management;
- A surface water dam dewatering and decommissioning plan is recommended to be prepared and implemented before the commencement of earth works;
- Investigate areas around the sewage effluent irrigation area for microbial and other potential contaminants;
- Undertake a detailed desktop study including but not limited to the activities on-site and neighbouring sites, the search of chemical storage register, and groundwater extraction wells.

Ecological Investigation Levels

The concentration of chromium in the soil samples collected was below the site-specific derived EIL of 750 mg/kg. As per NEPM schedule B5b, all EILs only apply to soil to a depth of 2 m BGL. Current investigations were undertaken to a depth of 1 m BGL. It is recommended that an EIL assessment is undertaken in soil profiles between 1 to 2 m BGL to address the data gap.

Sampling Analysis and Quality Plan (SAQP)

A Sampling Analysis and Quality Plan is recommended to be prepared as the next step. This SAQP will capture the requirements of the future investigation works, address data gaps and define the scope and the extent of the future environmental investigations on site.

К2

14. LIMITATIONS

This report has been prepared for use by the Client who has commissioned the works in accordance with the project brief only and has been based on information provided by the client. The advice herein relates only to this project and all results, conclusions, and recommendations made should be reviewed by a competent and experienced person with experience in environmental and occupational hygiene investigations, before being used for any other purpose.

K2 Environmental Services Pty Ltd (K2) accepts no liability for use or interpretation by any person or body other than the client who commissioned the works. This report should not be reproduced or amended in any way without prior approval by the client or K2 and should not be relied upon by any other party, who should make their own independent inquiries. This report does not provide a complete assessment of the status of the site, and it is limited to the scope defined herein. Should information become available regarding conditions at the site including previously unknown sources of contamination, K2 reserves the right to review the report in the context of the additional information. When interpreting reports from other parties, K2 assumes that works undertaken were of a high standard. K2 does not take responsibility for the works or quality of reports produced by other parties involved in the project at any time.

The report is reviewed and authorised by Dawit Bekele (PhD, PE) (Certified Site Contamination Specialist CEnvP-SC (ID. SC41149). Dawit has provided an expert review of this report based on the information and data provided by K2. K2's professional opinions are based upon its professional judgment, experience, training, and results from analytical data (if applicable). In some cases, further testing and analysis may be required, thus producing different results and/or opinions. K2 has limited investigation to the scope agreed upon with its client. It should be noted only the subject area outlined in this report was inspected and adjacent areas may contain asbestos. K2 reserves the right to retract, review and amend this report if an omission, error, or further investigation is required that may affect the conclusions in the report.

Unless otherwise agreed in writing and signed by both parties, K2's total aggregate liability will not exceed the total consulting fees paid by the client in relation to this Proposal. K2 has used a degree of care and skill ordinarily exercised in similar investigations by a reputable member of the Environmental Industry within Australia. No other warranty, expressed or implied, is made or intended.

15. REFERENCES

- National Environment Protection Council (NEPC), (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999, NEPM, Canberra. Schedule B2: Guideline On-site Characterisation.
- NSW EPA (1997). Contaminated Land Management Act 1997.
- NSW Environmental Protection Authority (2014). Waste Classification Guidelines.
- NSW Government (2016). NSW Work Health and Safety Regulations.
- NSW EPA (2020) Contaminated Land Guidelines Consultants Reporting on Contaminated Land.
 NSW EPA (2022) Contaminated land sampling design guidelines , part 1 application.
- Australian Standard 4482.1-2005: Guide to the Investigation and Sampling of Potentially Contaminated Soil Part 1: Non-volatile and semi-volatile compounds, Part 2: Volatile compounds

Appendix I

Aerial Photographs

Figure 1. Aerial photograph of the subject areas on site - Areas of Environmental Concern (AEC) identified by the PSI (Civplan PSI 2017).

Figure 2. Aerial photograph of the subject site with approximate borehole locations and chromium exceedance.

K2 Consulting Group

Stage 2 - Environmental Site Investigation

Appendix II

Photographs

Photo.1. Representative photo of the imported fill and soil profile at borehole 1 (on the driveway).

Photo.3. Representative photo of the imported fill and soil profile at borehole 8.

515 Crookwell Road, Kingsdale NSW 2580

Photo.2. Representative photo of soil profile at borehole 3.

Photo.4. Representative photo of the soil profile observed at borehole 4.

Photo.5. Representative photo of storage in the shed at AEC 2.

Photo.7. Representative photo of IBC scattered on site.

Photo.6. Representative photo of storage of equipment and chemicals in the shed at AEC 2.

Photo.8. Representative photo of rubbish pile observed on the site.

Photo.9. Representative photo of agricultural equipment on site.

Photo.11. Representative photo of soil profile at the cattle loading station.

515 Crookwell Road, Kingsdale NSW 2580

Photo.10. Representative photo of colourbond shed present on site.

Photo.12. Representative photo of unidentified chemical inside an IBC observed on the property.

Photo.13. Representative photo of above ground fuel storage tank observed on site.

515 Crookwell Road, Kingsdale NSW 2580

Photo.14. Representative photo of above ground fuel storage tank observed on site.

515 Crookwell Road, Kingsdale NSW 2580

Appendix III

Soil Bore Logs

K2 CONS	ULTING	GROUP
---------	--------	-------

PROJECT NUMBER ST-01-1492 **SAMPLING DATE 27/06/2022** COORDINATES 34°42.698' S 149°42.155' E PROJECT NAME Environmental Site Investigatior SAMPLING CONTRACTOR Taralga Earth Trembl CLIENT Alimaco Pty Ltd SURFACE ELEVATION 681m AHD **OPERATOR** Terry ADDRESS 515 Crookwell Road, Kingsdale NSW SAMPLING EQUIPMENT Excavator/Hand Auger LOGGED BY Sirish Baniya 2580 CHECKED BY Kannan Kaliappan COMMENTS Is Analysed? **Graphic Log** Depth (m) Additional Observations Samples **Material Description** ST-01-1492-BH01 (0.2m) FILL. Silty CLAY with minor gravels. Dark to light brown. \overline{Y} ST-01-1492-BH01-ASB1(0.2 Dry. Loose. FILL. Silty CLAY with minor gravels. Dark to light brown. Dry. Loose. 0.5 ST-01-1492-BH01 (0.7m) ST-01-1492-BH01 (1.0m) ST-01-1492-BH01-ASB1' NATURAL. Silty CLAY with minor gravels. Light brown to grey. Stiff. Slightly moist. (1.0m) Termination Depth at:1.0m - 1.5 2 - 2.5 3 - 3.5 4 4.5 5 - 5.5

K2 CONSULTING GROUP

0.5

1

- 1.5

- 2

PROJECT NUMBER ST-01-1492 **SAMPLING DATE 27/06/2022** COORDINATES 34°42.698' S 149°42.155' E PROJECT NAME Environmental Site Investigation SAMPLING CONTRACTOR Taralga Earth Trembl CLIENT Alimaco Pty Ltd **OPERATOR** Terry SURFACE ELEVATION 681m AHD ADDRESS 515 Crookwell Road, Kingsdale SAMPLING EQUIPMENT Excavator/Hand Auger LOGGED BY Sirish Baniya NSW 2580 CHECKED BY Kannan Kaliappan COMMENTS Is Analysed? **Graphic Log** Depth (m) Additional Observations Samples **Material Description** ST-01-1492-BH02 (0.2m) TOPSOIL. Silty CLAY. Dark brown. Slightly moist. Organic. Roots observed at $\overline{\mathbf{Y}}$ ST-01-1492-BH02-ASB2(0 0-0.2m BGL NATURAL. Silty CLAY. Light brown to grey. Slightly ST-01-1492-BH02 (0.4m) ST-01-1492-BH02-ASB2 moist. (0.4m) Termination Depth at:0.4m

K2 Consulting Gr	nun - Suite222 Building B 20 I	exington D	rive Bella Vista NSW/ 2153	Page 1 o
_				
_				
- 5.5				
5 -				
- - -				
-				
- 4.5				
-				
4				
-				
- 3.5 -				
-				
-				
- 3				
-				
- 2.5				

K2	CO	NSI	JLTI	NG	GRO	UP

TEST	PIT	LOGS	BH03	

CLIENT Alimaco F	Environmental Site Investigatio Pty Ltd	r SA OP	MPLING ERATO	CONTRACTOR Taralga Earth Trembl R Terry CEQUIPMENT Excavator/Hand Auger	SURFACE ELEVATION 689m AHD						
COMMENTS											
Depth (m)	Samples	ls Analysed?	Graphic Log	Material Descriptior	1	Additional Observations					
-	ST-01-1492-BH03 (0.2m) ST-01-1492-BH03-ASB3(0.2 ST-01-1492-BH03 (0.5m) ST-01-1492-BH03-ASB3'	M		FILL. Silty CLAY. Red to brown. Loose.	Slightly moist.						
0.5 	<u>((0.5m)</u>			NATURAL. Silty CLAY. Very stiff. Orang Slightly moist.	ge-brown mottled.						
- - - 1 - -				Termination Depth at:0.7m							
- 1.5 - -											
- -2 -											
- - 2.5 - -											
- 3 - -											
- 3.5 - -											
- - 4 - -											
- 4.5 -											
- - 5 - -											
- - 5.5 - - -											

K2 CONSULTING GROUI	P
----------------------------	---

CLIENT Alimaco F	Environmental Site Investigatio Pty Ltd	r SA OP	MPLING	G DATE 27/06/2022 G CONTRACTOR Taralga Earth Trembl R Terry G EQUIPMENT Excavator/Hand Auger	SURFACE ELEVATION 692m AHD					
COMMENTS										
Depth (m)	Samples	Is Analysed?	Graphic Log	Material Descriptio	n	Additional Observations				
	ST-01-1492-BH04 (0.2m) ST-01-1492-BH04-ASB4(0.2r	\mathbb{N}		TOPSOIL. Silty CLAY. Brown. Dry. Loc		Organic. Roots observed at 0-0.2m BGL.				
_	ST-01-1492-BH04 (0.4m) ST-01-1492-BH04-ASB4'			NATURAL. Silty CLAY. Light brown to solightly moist.	grey. Loose.					
- 0.5 - -	\ <u>(0.4m)</u>			Termination Depth at:0.4m (Rock refus	al)					
- 1 - -										
- 1.5 										
2 2										
- - - 2.5										
- - - 3										
-										
- 3.5 - -										
- 4 										
- - 4.5 -										
- - - 5 -										
- - - 5.5 - -										

K2 CONSULTING GROUI	P
----------------------------	---

PROJECT NUMBER ST-01-1492 **SAMPLING DATE 27/06/2022** COORDINATES 34°42.659' S 149°42.077' E PROJECT NAME Environmental Site Investigatior SAMPLING CONTRACTOR Taralga Earth Trembl CLIENT Alimaco Pty Ltd SURFACE ELEVATION 748m AHD **OPERATOR** Terry ADDRESS 515 Crookwell Road, Kingsdale NSW SAMPLING EQUIPMENT Excavator/Hand Auger LOGGED BY Sirish Baniya 2580 CHECKED BY Kannan Kaliappan COMMENTS Is Analysed? Graphic Log Depth (m) Additional Observations Samples **Material Description** ST-01-1492-BH07 (0.2m) Compacted FILL. Silty CLAY with minor gravels. Light Organic. Roots observed at \overline{P} Brown. Dry. Loose. ST-01-1492-BH04-ASB7(0.2 0-0.2m BGL ST-01-1492-BH07 (0.4m) NATURAL. Silty CLAY. Yellow-orange mottled. Stiff. ST-01-1492-BH07-ASB7 Slightly moist. (0.4m) 0.5 Termination Depth at:0.4m 1 - 1.5 2 - 2.5 3 - 3.5 4 4.5 5 - 5.5

K2 CONSULTING GROUP

Г

CLIENT Alimaco P	Environmental Site Investigation ty Ltd	r SA OP	MPLING	CONTRACTOR Taralga Earth Trembl	n Baniya					
COMMENTS										
Depth (m)	Samples	onmental Site Investigatior SAMF d OPER ell Road, Kingsdale NSW SAMF Samples 01-1492-BH08 (0.2m) 01-1492-BH08 (0.2m) 01-1492-BH08 (0.4m) 01-1492-BH08 (0.4m) 01-1492-BH08 (0.4m)	Graphic Log	Material Description	Additional Observations					
_	ST-01-1492-BH08 (0.2m) ST-01-1492-BH08-ASB8(0.2r	\mathbb{N}	\bigotimes	FILL. Silty CLAY with gravelly aggregates. Brown. Dry. Loose.	Organic. Roots observed at 0-0.2m BGL.					
	ST-01-1492-BH08 (0.4m) ST-01-1492-BH08-ASB8'			NATURAL. Silty CLAY. Orange-brown mottled. Very stiff. Slightly moist.						
0.5 	\ <u>(0.4m)</u>			Termination Depth at:0.4m						
- 1 -										
- 1.5 										
- 2 										
2.5 										
- 										
- - - 4 -										
- - - 4.5 -										
- - - - 5 -										
- - 5.5 										

K2 CONSULTING GROUP

PROJECT NUMBER ST-01-1492

SAMPLING DATE 27/06/2022 COORDINATES 34°42.752' S 149°42.090' E PROJECT NAME Environmental Site Investigatior SAMPLING CONTRACTOR Taralga Earth Trembl **OPERATOR** Terry SURFACE ELEVATION 686m AHD SAMPLING EQUIPMENT Excavator/Hand Auger LOGGED BY Sirish Baniya

CLIENT Alimaco Pty Ltd ADDRESS 515 Crookwell Road, Kingsdale NSW 2580

CHECKED BY Kannan Kaliappan

COMMENTS			•		
Depth (m)	Samples	Is Analysed?	Graphic Log	Material Description	Additional Observations
	ST-01-1492-BH09 (0.2m) ST-01-1492-BH09-ASB9(0.2		{ { { { { { { { { { { { { { { { { { { {	TOPSOIL. Gravelly silty CLAY. Brown. Dry. Loose.	Oraganic. Roots observed at 0-0.2m BGL.
		ľ .		Termination Depth at:0.2m (Abandonment)	
0.5					
1					
1.5					
1.0					
2					
- 2.5					
- 3					
C C					
- 3.5					
- 4					
- 4.5					
- 5					
5.5					

TEST PIT LOGS BH10

K2 CONSULTING GROUP

PROJECT NUMBER ST-01-1492

SAMPLING DATE	27/06/2022

COORDINATES 34°42.446' S 149°41.571' E

PROJECT NAME Environmental Site Investigatior SAMPLING CONTRACTOR Taralga Earth Trembl

CLIENT Alimaco Pty Ltd ADDRESS 515 Crookwell Road, Kingsdale NSW SAMPLING EQUIPMENT Excavator/Hand Auger LOGGED BY Sirish Baniya 2580

OPERATOR Terry

SURFACE ELEVATION 678m AHD CHECKED BY Kannan Kaliappan

COMMENTS					
Depth (m)	Samples	Is Analysed?	Graphic Log	Material Description	Additional Observations
	ST-01-1492-BH10 (0.2m) ST-01-1492-BH10-ASB10(0.2)	M	{ { {	TOPSOIL. Silty CLAY. Brown. Moist.	Organic. Roots observed at 0-0.2m BGL.
- - - 0.5 - -				Termination Depth at:0.2m (Abandonment)	
- - -					
- 1.5 - -					
-2					
- 2.5 - - -					
- 3 - - -					
- 3.5 - - -					
- 4.5 - - - -					
5 					
- 5.5 - - -					

TEST PIT LOGS BH11

SAMPLING DATE 27/06/2022

COORDINATES 34°42.683' S 149°42.123' E

K2 CONSULTING GROUP

PROJECT NUMBER ST-01-1492

CLIENT Alimaco	o Pty Ltd	r SAMPLING CONTRACTOR Taralga Earth Trembl OPERATOR Terry SAMPLING EQUIPMENT Excavator/Hand Auger CHECKED BY Kannan Kaliappan										
COMMENTS												
Depth (m)	Samples	Is Analysed?	Graphic Log	Material Descriptio	n	Additional Observations						
_	ST-01-1492-BH11 (0.2m) ST-01-1492-BH11-ASB11(0.2	\mathbb{N}		TOPSOIL. Silty CLAY. Brown. Moist.		Organic. Roots observed at 0-0.2m BGL.						
-	ST-01-1492-BH11 (0.4m)			NATURAL. Gravelly silty CLAY. Dark to Moist.	o light Brown.							
- 0.5				Termination Depth at:0.4m								
_ _ 1												
' - _												
- 1.5												
-												
- 2												
-												
- 2.5												
-												
-												
-												
- 3.5												
-												
_												
_												
- 4.5 -												
-												
- 5												
-												
-												
- 5.5												
-												
-												

Appendix IV

Laboratory Results Summary

					١	Vetals and	Metalloids	;			AS	ilp	TRH							В	
	OUP		Arsenic	Cadmium	Total Chromium	Copper	Lead	Mercury (inorganic)	Nickel	Zinc	Chromium III	Chromium VI	ТКН С6 - С9	TRH C10-C14	F1 ((C6-C10)- BTEX)	F2 (>C10-C16 less Naphthalene)	F3 (>C16-C34)	F4 (>C34-C40)	Benzene	Toluene	
		LOR	2	0.4	5	5	5	0.1	5	5	0.005	0.005	20	20	20	50	100	100	0.1	0.1	
Sample ID HILA (Residential)	Depth	Sample Date	mg/kg 100	mg/kg 20	mg/kg 100	mg/kg 7.000	mg/kg 300	mg/kg 200	mg/kg 400	mg/kg 8.000	mg/L	mg/L	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
HLA (Residential)	1m-<2m	Clay	100	20	100	7,000	500	200	400	8,000			-	-	60	330	-	-	0.8	560	
ESL (Urban residential and public space)		Clay													180	120	1300	5600	65.0	105	
EIL(Site specific)			100		750	75	1,100		290	170											
Management Limit ST-01-1492-BH01		27.06.2022	2.2	<0.4	190	27	9.1	<0.1	100	48	0.35	<0.005	- <20	- <20	800 <20	1000 <50	3,500 <100	10,000 <100	<0.1	<0.1	
	0.2 m	27.06.2022	2.2	<0.4		21		<0.1	80	48	0.55	<0.005	<20	<20	<20	<50	<100	<100	<0.1	<0.1	
ST-01-1492-BH01 ST-01-1492-BH01	0.7 m 1.0 m	27.06.2022	<2	<0.4	150 250	21	7.8 <5	<0.1	120	68	< 0.05	- <0.005	<20	<20	<20	<50	<100	<100	<0.1	<0.1	
ST-01-1492-BH02	0.2 m	27.06.2022	4.3	<0.4	81	17	22	<0.1	30	49		<0.005	<20	<20	<20	<50	<100	<100	<0.1	<0.1	
ST-01-1492-BH02	0.2 m	27.06.2022	4.5	<0.4	110	17	22	<0.1	31	32	0.18	0.010	<20	<20	<20	<50	<100	<100	<0.1	<0.1	
ST-01-1492-BH03	0.4 m	27.06.2022	12	<0.4	140	19	22	<0.1	28	32	0.18	<0.005	<20	<20	<20	<50	<100	<100	<0.1	<0.1	
ST-01-1492-BH03	0.2 m	27.06.2022	12	<0.4	140	29	25	<0.1	50	38	-	<0.005	<20	<20	<20	<50	<100	<100	<0.1	<0.1	
ST-01-1492-BH04	0.3 m	27.06.2022	<2	<0.4	170	54	13	<0.1	120	180		-	<20	<20	<20	<50	<100	<100	<0.1	<0.1	
ST-01-1492-BH04	0.2 m	27.06.2022	<2	<0.4	110	38	<5	<0.1	120	63	0.20	0.011	<20	<20	<20	<50	<100	<100	<0.1	<0.1	
ST-01-1492-BH07	0.4 m	27.06.2022	7.1	<0.4	76	24	16	<0.1	30	34	-	0.011	<20	<20	<20	<50	<100	<100	<0.1	<0.1	
ST-01-1492-BH07	0.2 m	27.06.2022	5.3	<0.4	70	23	15	<0.1	35	38		-	<20	<20	<20	<50	<100	<100	<0.1	<0.1	
ST-01-1492-BH08	0.2 m	27.06.2022	30	<0.4	160	14	31	<0.1	11	21	0.11	0.014	<20	<20	<20	<50	<100	<100	<0.1	<0.1	
ST-01-1492-BH08	0.2 m	27.06.2022	3.9	<0.4	48	18	13	<0.1	16	32	-	- 0.014	<20	<20	<20	<50	<100	<100	<0.1	<0.1	
ST-01-1492-BH09	0.2 m	27.06.2022	15	<0.4	52	5.1	31	<0.1	6.2	14	-	-	<20	<20	<20	<50	<100	<100	<0.1	<0.1	
ST-01-1492-BH10	0.2 m	27.06.2022	6.9	<0.4	32	5.7	19	<0.1	<5	31	-	-	<20	<20	<20	<50	<100	<100	<0.1	<0.1	
ST-01-1492-BH11	0.2 m	27.06.2022	21	<0.4	130	14	34	<0.1	11	130	0.044	0.016	<20	<20	<20	<50	110	<100	<0.1	<0.1	
ST-01-1492-BH11	0.4 m	27.06.2022	27	<0.4	190	12	49	<0.1	7.8	59	-	-	<20	<20	<20	<50	<100	<100	<0.1	<0.1	
ST-01-1492-SS01	-	27.06.2022	4.7	<0.4	29	23	12	<0.1	5.7	85	-	-	<20	<20	<20	<50	110	<100	<0.1	<0.1	
ST-01-1492-SS02	-	27.06.2022	10	<0.4	140	38	37	<0.1	62	220	<0.05	<0.005	<100	<100	<100	<250	<500	710	<0.5	<0.5	
ST-01-1492-SS03	-	27.06.2022	5	<0.4	24	28	9.4	<0.1	16	350	-	-	<100	<20	<100	<50	<500	200	<0.5	<0.5	
ST-01-1492-BR1	0.2 m	27.06.2022	18	<0.4	130	12	28	<0.1	10	26	-	-	<20	<20	<20	<50	<100	<100	<0.1	<0.1	
						1															
RPD1 (Duplicate)			50	0	21	15	10	0	10	21	-	-	0	0	0	0	0	0	0	0	
UCL calculation			-	-	139	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	

Notes:

NAD- No Asbestos Detected

Site Acceptance Criteria - Low Density Residential - as per National Environment Protection (Assessment of Site Contamination) Measure - Schedule B1 and B2

			TEX		РАН													
K2 K2 CONSULTING GR	OUP		Ethylbenzene	Total Xylenes	Acenaphthene	Acenaphthylene	Anthracene	Benz(a)anthracene	Benzo(a) pyrene	Benzo(b,j)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoran thene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-c,d)pyrene	Naphthalene
		LOR	0.1	0.3	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
Sample ID HIL A (Residential)	Depth	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg 300	mg/kg	mg/kg	mg/kg	mg/kg
HSLA (Residential)	1m-<2m	Clay	NL	130														5
ESL (Urban residential and public space)		Clay	125	45	170	0.7			1.4									170
EIL(Site specific) Management Limit					170	0.7												170
ST-01-1492-BH01	0.2 m	27.06.2022	<0.1	<0.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
ST-01-1492-BH01	0.7 m	27.06.2022	<0.1	<0.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
ST-01-1492-BH01	1.0 m	27.06.2022	<0.1	<0.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
ST-01-1492-BH02	0.2 m	27.06.2022	<0.1	<0.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
ST-01-1492-BH02	0.4 m	27.06.2022	<0.1	<0.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
ST-01-1492-BH03	0.2 m	27.06.2022	<0.1	<0.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
ST-01-1492-BH03	0.5 m	27.06.2022	<0.1	<0.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
ST-01-1492-BH04	0.2 m	27.06.2022	<0.1	<0.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
ST-01-1492-BH04	0.4 m	27.06.2022	<0.1	<0.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
ST-01-1492-BH07	0.2 m	27.06.2022	<0.1	<0.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
ST-01-1492-BH07	0.4 m	27.06.2022	<0.1	<0.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
ST-01-1492-BH08	0.2 m	27.06.2022	<0.1	<0.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
ST-01-1492-BH08	0.4 m	27.06.2022	<0.1	<0.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
ST-01-1492-BH09	0.2 m	27.06.2022	<0.1	<0.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
ST-01-1492-BH10	0.2 m	27.06.2022	<0.1	<0.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
ST-01-1492-BH11	0.2 m	27.06.2022	<0.1	<0.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
ST-01-1492-BH11	0.4 m	27.06.2022	<0.1	<0.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
ST-01-1492-SS01	-	27.06.2022	<0.1	<0.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
ST-01-1492-SS02	-	27.06.2022	<0.5	<1.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
ST-01-1492-SS03	-	27.06.2022	<0.5	<1.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
						1												
ST-01-1492-BR1	0.2 m	27.06.2022	<0.1	<0.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
RPD1 (Duplicate)			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
UCL calculation			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Notes:

NAD- No Asbestos Detected

Site Acceptance Criteria - Low Density Residential - as per National Environment Protection (Assessment of Site Contamination) Mer

Note: Note: <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th colspan="6">OCP</th><th></th><th>OPP</th><th>Asbestos</th></th<>								OCP							OPP	Asbestos	
Image in the standImage	K2 K2 CONSULTING GR	OUP		Phenanthrene	Pyrene	PAH (Total)	Carcinogenic PAHs as B(a)P TEQ	DDT+DDE+DDD	Aldrin & Dieldrin	Total Chlordane	Total Endosulfan	Endrin	Heptachlor		Methoxychlor	Chlorpyriphos	(50
nin A gender MA Medicationalindex																	N
index and analysic subsindex and ana		Depth	Sample Date	mg/kg	mg/kg		0. 0	0.0		0. 0	0.0	0. 0				5	
Bind Disk Disk <thdisk< th=""> Disk Disk <thd< td=""><td></td><td>1m-<2m</td><td>Clay</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thd<></thdisk<>		1m-<2m	Clay														
Management timeImagement timeImage			Clay														
Shorthade bin						-		180			-		-				
Image Image <th< td=""><td>· · · · ·</td><td>0.2 m</td><td>27.06.2022</td><td><0.5</td><td><0.5</td><td><0.5</td><td><0.5</td><td><0.05</td><td><0.05</td><td><0.1</td><td><0.05</td><td><0.05</td><td><0.05</td><td><0.05</td><td><0.05</td><td><0.2</td><td>-</td></th<>	· · · · ·	0.2 m	27.06.2022	<0.5	<0.5	<0.5	<0.5	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	-
Short-MappendeIndZhoczyAuSubAu										-							
StatistyStatist									-								
Shortadda and and and and and and and and and			-						-								-
Short-1492-BMBShort-																	
StalladeStallad		-		<0.5					-								-
Start									-								
ST014928H4OHST0202OHST05ST05ST05ST05ST05ST05ST05ST05ST05ST05		0.2 m		<0.5	<0.5	<0.5		<0.05	< 0.05				< 0.05	<0.05		<0.2	-
And <br< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></br<>																	
And <br< td=""><td>ST-01-1492-BH07</td><td>0.2 m</td><td>27.06.2022</td><td><0.5</td><td><0.5</td><td><0.5</td><td><0.5</td><td><0.05</td><td><0.05</td><td><0.1</td><td><0.05</td><td><0.05</td><td><0.05</td><td><0.05</td><td><0.05</td><td><0.2</td><td>-</td></br<>	ST-01-1492-BH07	0.2 m	27.06.2022	<0.5	<0.5	<0.5	<0.5	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	-
Shore	ST-01-1492-BH07	0.4 m	27.06.2022	<0.5	<0.5	<0.5	<0.5	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	
STO1492800ORORZO6202OROOR <td>ST-01-1492-BH08</td> <td>0.2 m</td> <td>27.06.2022</td> <td><0.5</td> <td><0.5</td> <td><0.5</td> <td><0.5</td> <td><0.05</td> <td><0.05</td> <td><0.1</td> <td><0.05</td> <td><0.05</td> <td><0.05</td> <td><0.05</td> <td><0.05</td> <td><0.2</td> <td>-</td>	ST-01-1492-BH08	0.2 m	27.06.2022	<0.5	<0.5	<0.5	<0.5	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	-
ST014928H10O.2 mO.2 m <td>ST-01-1492-BH08</td> <td>0.4 m</td> <td>27.06.2022</td> <td><0.5</td> <td><0.5</td> <td><0.5</td> <td><0.5</td> <td><0.05</td> <td><0.05</td> <td><0.1</td> <td><0.05</td> <td><0.05</td> <td><0.05</td> <td><0.05</td> <td><0.05</td> <td><0.2</td> <td></td>	ST-01-1492-BH08	0.4 m	27.06.2022	<0.5	<0.5	<0.5	<0.5	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	
STO14928H1OLMD.MZO6.202A.M	ST-01-1492-BH09	0.2 m	27.06.2022	<0.5	<0.5	<0.5	<0.5	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	-
ST014928H10.4m27.06.2020.5m	ST-01-1492-BH10	0.2 m	27.06.2022	<0.5	<0.5	<0.5	<0.5	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	-
STOL 1492 SSO1 O P	ST-01-1492-BH11	0.2 m	27.06.2022	<0.5	<0.5	<0.5	<0.5	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	-
STOL	ST-01-1492-BH11	0.4 m	27.06.2022	<0.5	<0.5	<0.5	<0.5	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	
ST-01-1492-SS03 Image: S	ST-01-1492-SS01	-	27.06.2022	<0.5	<0.5	<0.5	<0.5	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	-
And	ST-01-1492-SS02	-	27.06.2022	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-
RPD1 (Duplicate) And And <td>ST-01-1492-SS03</td> <td>-</td> <td>27.06.2022</td> <td><0.5</td> <td><0.5</td> <td><0.5</td> <td><0.5</td> <td><0.05</td> <td><0.05</td> <td><0.1</td> <td><0.05</td> <td><0.05</td> <td><0.05</td> <td><0.05</td> <td><0.05</td> <td><0.2</td> <td>-</td>	ST-01-1492-SS03	-	27.06.2022	<0.5	<0.5	<0.5	<0.5	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	-
RPD1 (Duplicate) And And <td></td> <td></td> <td></td> <td></td> <td></td> <td>l</td> <td></td> <td>1</td> <td></td> <td></td> <td>l</td> <td>İ</td> <td>İ</td> <td></td> <td></td> <td></td> <td></td>						l		1			l	İ	İ				
	ST-01-1492-BR1	0.2 m	27.06.2022	<0.5	<0.5	<0.5	<0.5	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	-
			1														
UCL calculation	RPD1 (Duplicate)			0	0	0	0	0	0	0	0	0	0	0	0	0	
	UCL calculation			-	-	-	-	-	-	-	-	-	-	-	-	-	-

Notes:

NAD- No Asbestos Detected

Site Acceptance Criteria - Low Density Residential - as per National Environment Protection (Assessment of Site Contamination) Mea

515 Crookwell Road, Kingsdale NSW 2580

Appendix V

Laboratory Reports

K2 Enviro Solutions Suite 1A, Level 2, 802 Pacific Highway Gordon NSW 2768

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention:

Kannan Kaliappan

Report Project name Project ID Received Date 902467-S 515 CROOKWELL ROAD KINGSDALE NSW 2580 ST-01-1492 Jul 01, 2022

Client Sample ID			ST-01-1492- BH01 (0.2M)	ST-01-1492- BH01 (0.7M)	ST-01-1492- BH01 (1.0M)	ST-01-1492- BH02 (0.2M)
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22-JI0001794	S22-JI0001795	S22-JI0001796	S22-JI0001797
Date Sampled			Jun 27, 2022	Jun 27, 2022	Jun 27, 2022	Jun 27, 2022
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	116	88	78	82
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	-	-	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	-	-	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	-	-	-
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID			ST-01-1492- BH01 (0.2M)	ST-01-1492- BH01 (0.7M)	ST-01-1492- BH01 (1.0M)	ST-01-1492- BH02 (0.2M)
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22-JI0001794	S22-JI0001795	S22-JI0001796	S22-JI0001797
Date Sampled			Jun 27, 2022	Jun 27, 2022	Jun 27, 2022	Jun 27, 2022
Test/Reference	LOR	Unit	· ·	, i		· ·
Polycyclic Aromatic Hydrocarbons		0				
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	-	-	-	-
2-Fluorobiphenyl (surr.)	1	%	65	56	57	71
p-Terphenyl-d14 (surr.)	1	%	64	54	90	95
Organochlorine Pesticides	1	_				
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Toxaphene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	-	-	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	-	-	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	-	-	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	-	-	-
Dibutylchlorendate (surr.)	1	%	89	101	80	93
Tetrachloro-m-xylene (surr.)	1	%	76	103	84	98
Organophosphorus Pesticides						
Azinphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Bolstar	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorfenvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Coumaphos	2	mg/kg	< 2	< 2	< 2	< 2
Demeton-S	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Demeton-O	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Diazinon	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dichlorvos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dimethoate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2

Client Sample ID			ST-01-1492- BH01 (0.2M)	ST-01-1492- BH01 (0.7M)	ST-01-1492- BH01 (1.0M)	ST-01-1492- BH02 (0.2M)
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22-JI0001794	S22-JI0001795	S22-JI0001796	S22-JI0001797
Date Sampled			Jun 27, 2022	Jun 27, 2022	Jun 27, 2022	Jun 27, 2022
Test/Reference	LOR	Unit				
Organophosphorus Pesticides	ł					
Disulfoton	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
EPN	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethoprop	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenitrothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fensulfothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Malathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Merphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Mevinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Monocrotophos	2	mg/kg	< 2	< 2	< 2	< 2
Naled	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Omethoate	2	mg/kg	< 2	< 2	< 2	< 2
Phorate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Pirimiphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Pyrazophos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ronnel	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Terbufos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tetrachlorvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tokuthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Trichloronate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Triphenylphosphate (surr.)	1	%	81	66	52	88
Heavy Metals						
Arsenic	2	mg/kg	2.2	2.2	< 2	4.3
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	190	150	250	81
Copper	5	mg/kg	27	21	23	17
Lead	5	mg/kg	9.1	7.8	< 5	22
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	100	80	120	30
Zinc	5	mg/kg	48	43	68	49
% Moisture	1	%	16	14	16	19

Client Sample ID			ST-01-1492- BH02 (0.4M)	ST-01-1492- BH03 (0.2M)	ST-01-1492- BH03 (0.5M)	ST-01-1492- BH04 (0.2M)
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22-JI0001798	S22-JI0001799	S22-JI0001800	S22-JI0001801
Date Sampled			Jun 27, 2022	Jun 27, 2022	Jun 27, 2022	Jun 27, 2022
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50

Client Sample ID			ST-01-1492- BH02 (0.4M)	ST-01-1492- BH03 (0.2M)	ST-01-1492- BH03 (0.5M)	ST-01-1492- BH04 (0.2M)
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22-JI0001798	S22-JI0001799	S22-JI0001800	S22-JI0001801
Date Sampled			Jun 27, 2022	Jun 27, 2022	Jun 27, 2022	Jun 27, 2022
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
BTEX	•					
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	145	103	83	53
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	-	-	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	-	-	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	-	-	-
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	-	-	-	-
2-Fluorobiphenyl (surr.)	1	%	74	79	54	72
p-Terphenyl-d14 (surr.)	1	%	110	102	91	86
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05

Client sample IJ Biti2 (2,4H) Biti2 (2,4H) Biti2 (2,4H) Biti2 (2,4H) Biti2 (2,4H) Biti2 (2,4H) Soil Soil<	ST-01-1492-
Eurorins Sample No. S22-JI0001795 S22-JI001795 S22-JI01175 S21 S2	BH04 (0.2M)
Date Sampled Jun 27, 2022 Jun 27, 2023 Jun 27, 2024<	Soil
Test/Reterance LOR Unit Image Image Image Organochlorine Pesticides 0.05 mg/kg < 0.05 < 0.05 < 0.05 Endosulfan II 0.05 mg/kg < 0.05 < 0.05 < 0.05 Endosulfan II 0.05 mg/kg < 0.05 < 0.05 < 0.05 Endosulfan Sulphate 0.05 mg/kg < 0.05 < 0.05 < 0.05 < 0.05 Endrin Ketone 0.05 mg/kg < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	S22-JI0001801
Organochlorine Pesticides mg/kg <	Jun 27, 2022
Endosulfan I 0.06 mg/kg < 0.05	
Endosulfan II 0.05 mg/kg < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0	
Endosulfan sulphate 0.05 mg/kg < 0.05 < 0.05 < 0.05 < 0.05 Endrin 0.06 mg/kg < 0.05	< 0.05
Endrin 0.05 mgkg < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 <0.05 <0.05	< 0.05
Endrin aldehyde 0.05 mg/kg < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 <	< 0.05
Endrin ketone 0.05 mg/kg < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0	< 0.05
g-HCH (Lindane) 0.05 mg/kg < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 <	< 0.05
Heptachlor 0.05 mg/kg < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02	< 0.05
Heptachlor epoxide 0.05 mg/kg < 0.05 mg/kg < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 <th< td=""><td>< 0.05</td></th<>	< 0.05
Hexachlorobenzene 0.05 mg/kg < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 <0.05 <0.05 <	< 0.05
Methoxychlor 0.05 mg/kg < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.	< 0.05
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	< 0.05
Aldrin and Dieldrin (Total)* 0.05 mg/kg - - . DDT + DDE + DDD (Total)* 0.05 mg/kg - - . Vic EPA IWRG 621 OCP (Total)* 0.1 mg/kg - - . Vic EPA IWRG 621 Other OCP (Total)* 1 % 132 106 82 1 Dibutylchlorendate (surr.) 1 % 99 99 84 0 Organophosphorus Pesticides - - - - - Azinphos-methyl 0.2 mg/kg < 0.2	< 0.05
DDT + DDE + DDD (Total)* 0.05 mg/kg - - . Vic EPA IWRG 621 OCP (Total)* 0.1 mg/kg -<	< 0.5
Vic EPA IWRG 621 OCP (Total)* 0.1 mg/kg - - - Vic EPA IWRG 621 Other OCP (Total)* 0.1 mg/kg - - - - Dibutylchlorendate (surr.) 1 % 132 106 82 Organophosphorus Pesticides - - - - - Azinphos-methyl 0.2 mg/kg <0.2	-
Vic EPA IWRG 621 Other OCP (Total)* 0.1 mg/kg - - - Dibutylchlorendate (surr.) 1 % 132 106 82 Tetrachloro-m-xylene (surr.) 1 % 99 99 84 Organophosphorus Pesticides - - - - Azinphos-methyl 0.2 mg/kg < 0.2	-
Dibutylchlorendate (surr.) 1 $\frac{9}{6}$ 132 106 82 Tetrachloro-m-xylene (surr.) 1 $\frac{9}{6}$ 99 99 84 Azinphos-methyl 0.2 mg/kg < 0.2	-
Tetrachloro-m-xylene (surr.) 1 % 99 99 84 Organophosphorus Pesticides mg/kg <0.2 mg/kg <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	-
Organophosphorus Pesticides ng/kg <.0.2 mg/kg <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <.0.2 <th<< td=""><td>99</td></th<<>	99
Azinphos-methyl0.2 mg/kg < 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0.2< 0	81
Bolstar 0.2 mg/kg < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 <th< td=""><td></td></th<>	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	< 0.2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	< 0.2
Chlorpyrifos-methyl 0.2 mg/kg < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 Coumaphos2 mg/kg < 2 < 2 < 2 < 2 < 2 Demeton-S 0.2 mg/kg < 0.2 < 0.2 < 0.2 < 0.2 Demeton-O 0.2 mg/kg < 0.2 < 0.2 < 0.2 < 0.2 Diazinon 0.2 mg/kg < 0.2 < 0.2 < 0.2 < 0.2 Dichlorvos 0.2 mg/kg < 0.2 < 0.2 < 0.2 < 0.2 Disulfoton 0.2 mg/kg < 0.2 < 0.2 < 0.2 < 0.2 EPN 0.2 mg/kg < 0.2 < 0.2 < 0.2 < 0.2 Ethion 0.2 mg/kg < 0.2 < 0.2 < 0.2 < 0.2 Ethyl parathion 0.2 mg/kg < 0.2 < 0.2 < 0.2 < 0.2 Ethyl parathion 0.2 mg/kg < 0.2 < 0.2 < 0.2 < 0.2 Fensulfothion 0.2 mg/kg < 0.2 < 0.2 < 0.2 < 0.2 Fensulfothion 0.2 mg/kg < 0.2 < 0.2 < 0.2 < 0.2 Malathion 0.2 mg/kg < 0.2 < 0.2 < 0.2 < 0.2 Monocrotophos 0.2 mg/kg < 0.2 < 0.2 < 0.2 < 0.2 Methyl parathion 0.2 mg/kg < 0.2 < 0.2 < 0.2 < 0.2 Methyl parathion 0.2 mg	< 0.2
Coumaphos2 mg/kg < 2 < 2 < 2 < 2 Demeton-S 0.2 mg/kg < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2
Demeton-S 0.2 mg/kg < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 <	< 0.2
Demeton-O 0.2 mg/kg < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 Diazinon 0.2 mg/kg < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 Dichlorvos 0.2 mg/kg < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 Dimethoate 0.2 mg/kg < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 Disulfoton 0.2 mg/kg < 0.2 < 0.2 < 0.2 < 0.2 EPN 0.2 mg/kg < 0.2 < 0.2 < 0.2 < 0.2 Ethion 0.2 mg/kg < 0.2 < 0.2 < 0.2 Ethoprop 0.2 mg/kg < 0.2 < 0.2 < 0.2 Ethyl parathion 0.2 mg/kg < 0.2 < 0.2 < 0.2 Fensulfothion 0.2 mg/kg < 0.2 < 0.2 < 0.2 Fensulfothion 0.2 mg/kg < 0.2 < 0.2 < 0.2 Malathion 0.2 mg/kg < 0.2 < 0.2 < 0.2 Merphos 0.2 mg/kg < 0.2 < 0.2 < 0.2 Metryl parathion 0.2 mg/kg < 0.2 < 0.2 < 0.2 Metryl parathion 0.2 mg/kg < 0.2 < 0.2 < 0.2 Metryl parathion 0.2 mg/kg < 0.2 < 0.2 < 0.2 Metryl parathion 0.2 mg/kg < 0.2 < 0.2 < 0.2 Moncorotophos 2 mg/kg $<$	< 2
Diazinon 0.2 mg/kg < 0.2 < 0.2 < 0.2 < 0.2 Dichlorvos 0.2 mg/kg < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 Dimethoate 0.2 mg/kg < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 Disulfoton 0.2 mg/kg < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 EPN 0.2 mg/kg < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 Ethion 0.2 mg/kg < 0.2 < 0.2 < 0.2 < 0.2 Ethyl parathion 0.2 mg/kg < 0.2 < 0.2 < 0.2 Fenitrothion 0.2 mg/kg < 0.2 < 0.2 < 0.2 Fensulfothion 0.2 mg/kg < 0.2 < 0.2 < 0.2 Fenthion 0.2 mg/kg < 0.2 < 0.2 < 0.2 Malathion 0.2 mg/kg < 0.2 < 0.2 < 0.2 Methyl parathion 0.2 mg/kg < 0.2 < 0.2 < 0.2 Methyl parathion 0.2 mg/kg < 0.2 < 0.2 < 0.2 Methyl parathion 0.2 mg/kg < 0.2 < 0.2 < 0.2 Methyl parathion 0.2 mg/kg < 0.2 < 0.2 < 0.2 Methyl parathion 0.2 mg/kg < 0.2 < 0.2 < 0.2 Methyl parathion 0.2 mg/kg < 0.2 < 0.2 < 0.2 Monocrotophos 2 mg	< 0.2
Dichlorvos 0.2 mg/kg < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 <td>< 0.2</td>	< 0.2
Dimethoate 0.2 mg/kg < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2
Disulfoton 0.2 mg/kg < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2
EPN 0.2 mg/kg < 0.2 c 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0	< 0.2
Ethion 0.2 mg/kg < 0.2 c 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2
Ethoprop 0.2 mg/kg < 0.2 c 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 <t< td=""><td>< 0.2</td></t<>	< 0.2
Ethyl parathion 0.2 mg/kg < 0.2 c 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2
Fenitrothion 0.2 mg/kg < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2
Fensulfothion 0.2 mg/kg < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2
Fenthion 0.2 mg/kg < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 <t< td=""><td>< 0.2</td></t<>	< 0.2
Malathion 0.2 mg/kg < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 <	< 0.2
Merphos 0.2 mg/kg < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 <th< td=""><td>< 0.2</td></th<>	< 0.2
Methyl parathion 0.2 mg/kg < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2
Mevinphos 0.2 mg/kg < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 <	< 0.2
Monocrotophos 2 mg/kg <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	< 0.2
Naled 0.2 mg/kg < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 <	< 0.2
Omethoate 2 mg/kg < 2 < 2 < 2 < 2 Phorate 0.2 mg/kg < 0.2	< 2
Phorate 0.2 mg/kg < 0.2 < 0.2 < 0.2 < 0.2	< 0.2
	< 2
	< 0.2
Pirimiphos-methyl 0.2 mg/kg < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2
Pyrazophos 0.2 mg/kg < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2

Client Sample ID			ST-01-1492- BH02 (0.4M)	ST-01-1492- BH03 (0.2M)	ST-01-1492- BH03 (0.5M)	ST-01-1492- BH04 (0.2M)
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22-JI0001798	S22-JI0001799	S22-JI0001800	S22-JI0001801
Date Sampled			Jun 27, 2022	Jun 27, 2022	Jun 27, 2022	Jun 27, 2022
Test/Reference	LOR	Unit				
Organophosphorus Pesticides						
Terbufos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tetrachlorvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tokuthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Trichloronate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Triphenylphosphate (surr.)	1	%	103	83	53	85
Heavy Metals						
Arsenic	2	mg/kg	4.7	12	12	< 2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	110	140	150	170
Copper	5	mg/kg	17	19	29	54
Lead	5	mg/kg	22	28	25	13
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	31	28	50	120
Zinc	5	mg/kg	32	39	38	180
% Moisture	1	%	17	14	18	12

Client Sample ID			ST-01-1492-	ST-01-1492-	ST-01-1492-	ST-01-1492-
•			BH04 (0.4M) Soil	BH07 (0.2M) Soil	BH07 (0.4M) Soil	BH08 (0.2M) Soil
Sample Matrix						
Eurofins Sample No.			S22-JI0001802	S22-JI0001803	S22-JI0001804	S22-JI0001805
Date Sampled			Jun 27, 2022	Jun 27, 2022	Jun 27, 2022	Jun 27, 2022
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
втех						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	140	116	76	88

Client Sample ID			ST-01-1492- BH04 (0.4M)	ST-01-1492- BH07 (0.2M)	ST-01-1492- BH07 (0.4M)	ST-01-1492- BH08 (0.2M)
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22-JI0001802	S22-JI0001803	S22-JI0001804	S22-JI0001805
Date Sampled			Jun 27, 2022	Jun 27, 2022	Jun 27, 2022	Jun 27, 2022
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons		-				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	-	-	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	-	-	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	-	-	-
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	mg/kg %	71	94	93	77
p-Terphenyl-d14 (surr.)	1	%	111	131	132	95
Organochlorine Pesticides		70		101	152	55
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Toxaphene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	-	-	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	-	-	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	-	-	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	- 100	- 1/2	- 150	-
Dibutylchlorendate (surr.)	1	%	109	143	150	121

Client Sample ID			ST-01-1492- BH04 (0.4M)	ST-01-1492- BH07 (0.2M)	ST-01-1492- BH07 (0.4M)	ST-01-1492- BH08 (0.2M)
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22-JI0001802	S22-JI0001803	S22-JI0001804	S22-JI0001805
Date Sampled			Jun 27, 2022	Jun 27, 2022	Jun 27, 2022	Jun 27, 2022
Test/Reference	LOR	Unit	· ·	, i	, i i	, i
Organophosphorus Pesticides		01				
Azinphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Bolstar	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorfenvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Coumaphos	2	mg/kg	< 2	< 2	< 2	< 2
Demeton-S	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Demeton-O	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Diazinon	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dichlorvos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dimethoate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Disulfoton	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
EPN	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethoprop	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenitrothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fensulfothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Malathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Merphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Mevinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Monocrotophos	2	mg/kg	< 2	< 2	< 2	< 2
Naled	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Omethoate	2	mg/kg	< 2	< 2	< 2	< 2
Phorate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Pirimiphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Pyrazophos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ronnel	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Terbufos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tetrachlorvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tokuthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Trichloronate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Triphenylphosphate (surr.)	1	%	78	91	106	103
Heavy Metals		1				
Arsenic	2	mg/kg	< 2	7.1	5.3	30
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	110	76	71	160
Copper	5	mg/kg	38	24	23	14
Lead	5	mg/kg	< 5	16	15	31
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	120	30	35	11
Zinc	5	mg/kg	63	34	38	21
		1				

Client Sample ID			ST-01-1492- BH08 (0.4M)	ST-01-1492- BH09 (0.2M)	ST-01-1492- BH10 (0.2M)	ST-01-1492- BH11 (0.2M)
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22-JI0001806	S22-JI0001807	S22-JI0001808	S22-JI0001809
Date Sampled			Jun 27, 2022	Jun 27, 2022	Jun 27, 2022	Jun 27, 2022
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	54	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	61	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	115	< 50
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	<u>%</u>	99	81	75	81
Polycyclic Aromatic Hydrocarbons		70				0.
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	-	-	_
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	-	-	_
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	_	-	-	_
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	-	-	-	-
2-Fluorobiphenyl (surr.)	1	%	68	71	69	77
p-Terphenyl-d14 (surr.)	1	%	113		144	105
Organochlorine Pesticides	'	, , , , , , , , , , , , , , , , , , , ,				
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05

Client Sample ID			ST-01-1492- BH08 (0.4M)	ST-01-1492- BH09 (0.2M)	ST-01-1492- BH10 (0.2M)	ST-01-1492- BH11 (0.2M)
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22-JI0001806	S22-JI0001807	S22-JI0001808	S22-JI0001809
Date Sampled			Jun 27, 2022	Jun 27, 2022	Jun 27, 2022	Jun 27, 2022
Test/Reference	LOR	Unit		, .		
Organochlorine Pesticides	Lon	Onit				
a-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Toxaphene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	-	-	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	-	-	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	-	-	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	-	-	-
Dibutylchlorendate (surr.)	1	%	105	Q09INT	125	145
Tetrachloro-m-xylene (surr.)	1	%	107	Q09INT	142	114
Organophosphorus Pesticides						
Azinphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Bolstar	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorfenvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Coumaphos	2	mg/kg	< 2	< 2	< 2	< 2
Demeton-S	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Demeton-O	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Diazinon	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dichlorvos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dimethoate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Disulfoton	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
EPN	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethoprop	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenitrothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fensulfothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Malathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Merphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Mevinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Monocrotophos	2	mg/kg	< 2	< 2	< 2	< 2
Naled	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2

Client Sample ID			ST-01-1492- BH08 (0.4M)	ST-01-1492- BH09 (0.2M)	ST-01-1492- BH10 (0.2M)	ST-01-1492- BH11 (0.2M)
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22-JI0001806	S22-JI0001807	S22-JI0001808	S22-JI0001809
Date Sampled			Jun 27, 2022	Jun 27, 2022	Jun 27, 2022	Jun 27, 2022
Test/Reference	LOR	Unit				
Organophosphorus Pesticides						
Omethoate	2	mg/kg	< 2	< 2	< 2	< 2
Phorate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Pirimiphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Pyrazophos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ronnel	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Terbufos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tetrachlorvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tokuthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Trichloronate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Triphenylphosphate (surr.)	1	%	94	131	126	107
Heavy Metals						
Arsenic	2	mg/kg	3.9	15	6.9	21
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	48	52	32	130
Copper	5	mg/kg	18	5.1	5.7	14
Lead	5	mg/kg	13	31	19	34
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	16	6.2	< 5	11
Zinc	5	mg/kg	32	14	31	130
% Moisture	1	%	25	15	21	14

Client Sample ID			ST-01-1492- BH11 (0.4M)	ST-01-1492- SS01	^{G01} ST-01-1492- SS02	^{G01} ST-01-1492- SS03
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22-JI0001810	S22-JI0001811	S22-JI0001812	S22-JI0001813
Date Sampled			Jun 27, 2022	Jun 27, 2022	Jun 27, 2022	Jun 27, 2022
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	< 20	< 100	< 100
TRH C10-C14	20	mg/kg	< 20	< 20	< 100	< 20
TRH C15-C28	50	mg/kg	< 50	54	< 250	260
TRH C29-C36	50	mg/kg	< 50	70	< 250	540
TRH C10-C36 (Total)	50	mg/kg	< 50	124	< 250	800
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 2.5	< 2.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 100	< 100
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 100	< 100
TRH >C10-C16	50	mg/kg	< 50	< 50	< 250	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 250	< 50
TRH >C16-C34	100	mg/kg	< 100	110	< 500	710
TRH >C34-C40	100	mg/kg	< 100	< 100	< 500	200
TRH >C10-C40 (total)*	100	mg/kg	< 100	110	< 500	910
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.5	< 0.5
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.5	< 0.5
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.5	< 0.5
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 1	< 1
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.5	< 0.5

Client Sample ID			ST-01-1492- BH11 (0.4M)	ST-01-1492- SS01	^{G01} ST-01-1492- SS02	^{G01} ST-01-1492- SS03
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22-JI0001810	S22-JI0001811	S22-JI0001812	S22-JI0001813
Date Sampled			Jun 27, 2022	Jun 27, 2022	Jun 27, 2022	Jun 27, 2022
Test/Reference	LOR	Unit				
BTEX						
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 1.5	< 1.5
4-Bromofluorobenzene (surr.)	1	%	114	95	118	91
Polycyclic Aromatic Hydrocarbons		70				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	_	_	_	_
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	_	_	-	_
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	-	-	-
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	-	-	-	-
2-Fluorobiphenyl (surr.)	1	%	70	80	108	99
p-Terphenyl-d14 (surr.)	1	%	83	78	76	91
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
a-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
b-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
d-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Toxaphene	0.5	mg/kg	< 0.5	< 0.5	< 10	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	-	-	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	-	-	-

Client Sample ID			ST-01-1492- BH11 (0.4M)	ST-01-1492- SS01	^{G01} ST-01-1492- SS02	^{G01} ST-01-1492- SS03
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22-JI0001810	S22-JI0001811	S22-JI0001812	S22-JI0001813
Date Sampled			Jun 27, 2022	Jun 27, 2022	Jun 27, 2022	Jun 27, 2022
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	_	_	_
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	-	-	-
Dibutylchlorendate (surr.)	1	%	103	105	64	93
Tetrachloro-m-xylene (surr.)	1	%	89	70	63	86
Organophosphorus Pesticides						
Azinphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Bolstar	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Chlorfenvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Coumaphos	2	mg/kg	< 2	< 2	< 5	< 2
Demeton-S	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Demeton-O	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Diazinon	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Dichlorvos	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Dimethoate	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Disulfoton	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
EPN	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Ethion	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Ethoprop	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Ethyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Fenitrothion	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Fensulfothion	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Fenthion	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Malathion	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Merphos	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Mevinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Monocrotophos	2	mg/kg	< 2	< 2	< 5	< 2
Naled	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Omethoate	2	mg/kg	< 2	< 2	< 5	< 2
Phorate	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Pirimiphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Pyrazophos	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Ronnel	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Terbufos	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Tetrachlorvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Tokuthion	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Trichloronate	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Triphenylphosphate (surr.)	1	%	79	87	76	90
Heavy Metals				47		
Arsenic	2	mg/kg	27	4.7	10	5.0
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	190	29	140	24
Copper	5	mg/kg	12	23	38	28
Lead	5	mg/kg	49	12	37	9.4
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	7.8	5.7	62	16
Zinc	5	mg/kg	59	85	220	350

Client Sample ID			ST-01-1492- BH11 (0.4M)	ST-01-1492- SS01	^{G01} ST-01-1492- SS02	^{G01} ST-01-1492- SS03
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22-JI0001810	S22-JI0001811	S22-JI0001812	S22-JI0001813
Date Sampled			Jun 27, 2022	Jun 27, 2022	Jun 27, 2022	Jun 27, 2022
Test/Reference	LOR	Unit				
% Moisture	1	%	12	26	28	26

Client Sample ID			ST-01-1492- BR1
Sample Matrix			Soil
Eurofins Sample No.			S22-JI0001814
Date Sampled			May 26, 2022
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons		01.11	
TRH C6-C9	20	mg/kg	< 20
TRH C10-C14	20	mg/kg	< 20
TRH C15-C28	50	mg/kg	< 50
TRH C29-C36	50	mg/kg	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50
Naphthalene ^{N02}	0.5	mg/kg	< 0.5
TRH C6-C10	20	mg/kg	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20
TRH >C10-C16	50	mg/kg	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50
TRH >C16-C34	100	mg/kg	< 100
TRH >C34-C40	100	mg/kg	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100
BTEX			
Benzene	0.1	mg/kg	< 0.1
Toluene	0.1	mg/kg	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2
o-Xylene	0.1	mg/kg	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3
4-Bromofluorobenzene (surr.)	1	%	89
Polycyclic Aromatic Hydrocarbons			
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2
Acenaphthene	0.5	mg/kg	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5
Anthracene	0.5	mg/kg	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5
Chrysene	0.5	mg/kg	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5
Fluorene	0.5	mg/kg	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5
Naphthalene	0.5	mg/kg	< 0.5

Client Sample ID			ST-01-1492-
			BR1
Sample Matrix			Soil
Eurofins Sample No.			S22-JI0001814
Date Sampled			May 26, 2022
Test/Reference	LOR	Unit	
Polycyclic Aromatic Hydrocarbons			
Phenanthrene	0.5	mg/kg	< 0.5
Pyrene	0.5	mg/kg	< 0.5
Total PAH*	0.5	mg/kg	< 0.5
2-Fluorobiphenyl (surr.)	1	%	127
p-Terphenyl-d14 (surr.)	1	%	Q09INT
Organochlorine Pesticides			
Chlordanes - Total	0.1	mg/kg	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05
а-НСН	0.05	mg/kg	< 0.05
Aldrin	0.05	mg/kg	< 0.05
b-HCH	0.05	mg/kg	< 0.05
d-HCH	0.05	mg/kg	< 0.05
Dieldrin	0.05	mg/kg	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05
Endrin	0.05	mg/kg	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05
Heptachlor	0.05	mg/kg	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05
Toxaphene	0.5	mg/kg	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1
Dibutylchlorendate (surr.)	1	%	1.7
Tetrachloro-m-xylene (surr.)	1	%	134
Organophosphorus Pesticides		1	
Azinphos-methyl	0.2	mg/kg	< 0.2
Bolstar	0.2	mg/kg	< 0.2
Chlorfenvinphos	0.2	mg/kg	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2
Coumaphos	2	mg/kg	< 2
Demeton-S	0.2	mg/kg	< 0.2
Demeton-O	0.2	mg/kg	< 0.2
Diazinon	0.2	mg/kg	< 0.2
Dichlorvos	0.2	mg/kg	< 0.2
Dimethoate	0.2	mg/kg	< 0.2
Disulfoton	0.2	mg/kg	< 0.2
EPN	0.2	mg/kg	< 0.2
Ethion	0.2	mg/kg	< 0.2
Ethoprop	0.2	mg/kg	< 0.2

Client Sample ID			ST-01-1492- BR1
Sample Matrix			Soil
Eurofins Sample No.			S22-JI0001814
Date Sampled			May 26, 2022
Test/Reference	LOR	Unit	
Organophosphorus Pesticides			
Ethyl parathion	0.2	mg/kg	< 0.2
Fenitrothion	0.2	mg/kg	< 0.2
Fensulfothion	0.2	mg/kg	< 0.2
Fenthion	0.2	mg/kg	< 0.2
Malathion	0.2	mg/kg	< 0.2
Merphos	0.2	mg/kg	< 0.2
Methyl parathion	0.2	mg/kg	< 0.2
Mevinphos	0.2	mg/kg	< 0.2
Monocrotophos	2	mg/kg	< 2
Naled	0.2	mg/kg	< 0.2
Omethoate	2	mg/kg	< 2
Phorate	0.2	mg/kg	< 0.2
Pirimiphos-methyl	0.2	mg/kg	< 0.2
Pyrazophos	0.2	mg/kg	< 0.2
Ronnel	0.2	mg/kg	< 0.2
Terbufos	0.2	mg/kg	< 0.2
Tetrachlorvinphos	0.2	mg/kg	< 0.2
Tokuthion	0.2	mg/kg	< 0.2
Trichloronate	0.2	mg/kg	< 0.2
Triphenylphosphate (surr.)	1	%	139
Heavy Metals		-	
Arsenic	2	mg/kg	18
Cadmium	0.4	mg/kg	< 0.4
Chromium	5	mg/kg	130
Copper	5	mg/kg	12
Lead	5	mg/kg	28
Mercury	0.1	mg/kg	< 0.1
Nickel	5	mg/kg	10.0
Zinc	5	mg/kg	26
% Moisture	1	%	12

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Jul 06, 2022	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jul 06, 2022	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jul 06, 2022	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Jul 06, 2022	14 Days
- Method: LTM-ORG-2010 BTEX and Volatile TRH			
Polycyclic Aromatic Hydrocarbons	Sydney	Jul 06, 2022	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Organochlorine Pesticides	Sydney	Jul 06, 2022	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Organophosphorus Pesticides	Sydney	Jul 06, 2022	14 Days
- Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MS			
Metals M8	Sydney	Jul 06, 2022	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Sydney	Jul 01, 2022	14 Days
- Method: LTM-GEN-7080 Moisture			

•			Eurofins Env ABN: 50 005 08		ng Australia Pty	Ltd							Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environme NZBN: 9429046024954	ent Testing NZ L
veb: wv	ww.eurofins.com.au		Melbourne 6 Monterey Roa Dandenong Sou VIC 3175 Tel: +61 3 8564	Geelon d 19/8 Lev th Groveda VIC 321 5000 Tel: +61	valan Street 17 Ile Gi 6 NS	ydney 79 Magowar irraween SW 2145 el: +61 2 99 ATA# 1261	00 840	Mitchell ACT 29 00 Tel: +61	Dacre Street	Brisbane 1/21 Smallw Murarrie QLD 4172 Tel: +61 7 3 NATA# 126	902 4600	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Tel: +61 2 4968 8448 4 NATA# 1261 Site# 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 45 51 IANZ# 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 767 Tel: 0800 856 450 IANZ# 1290
	mpany Name: dress:	K2 Enviro So Suite 1A, Le Gordon NSW 2768		acific Highway				Order No Report # Phone: Fax:	90	2467 49 669 559			Received: Due: Priority: Contact Name:	Jul 1, 2022 12:36 Pl Jul 8, 2022 5 Day Kannan Kaliappan	м
	oject Name: oject ID:	515 CROOK ST-01-1492		D KINGSDALI	E NSW 2580							Euro	fins Analytical Servic	es Manager : Hanna	ah Mawbey
		Sa	Imple Detail			MUISUUE SEL		Eurofins Suite B10							
Sydr	ney Laboratory	- NATA # 1261	Site # 18217	•			X	x							
	ney Laboratory rnal Laboratory	- NATA # 1261	Site # 18217	, 		;	×	x							
Exte No	rnal Laboratory Sample ID			Matrix	LAB ID)	×	x							
Exte No	rnal Laboratory Sample ID ST-01-1492- BH01 (0.2M)	Sample Date	Sampling	Matrix Soil	S22-JI00017) 794 ₎		x x							
	Sample ID ST-01-1492- BH01 (0.2M) ST-01-1492- BH01 (0.7M)	Sample Date Jun 27, 2022 Jun 27, 2022	Sampling	Matrix Soil Soil	S22-JI00017	794 ₃	×								
Exter No	Sample ID ST-01-1492- BH01 (0.2M) ST-01-1492- BH01 (0.7M) ST-01-1492- BH01 (0.7M) ST-01-1492- BH01 (0.7M)	Sample Date Jun 27, 2022 Jun 27, 2022 Jun 27, 2022	Sampling	Matrix Soil Soil Soil	S22-JI00017 S22-JI00017 S22-JI00017	794 ; 795 ; 796 ;	x x	x							
Exter No	Sample ID ST-01-1492- BH01 (0.2M) ST-01-1492- BH01 (0.7M) ST-01-1492- BH01 (0.7M) ST-01-1492- BH01 (1.0M) ST-01-1492- BH02 (0.2M)	Sample Date Jun 27, 2022	Sampling	Matrix Soil Soil Soil Soil	S22-JI00017 S22-JI00017 S22-JI00017 S22-JI00017 S22-JI00017	794 ; 795 ; 796 ; 797 ;	× ×	x x							
Exter No I 2 3 4	Sample ID ST-01-1492- BH01 (0.2M) ST-01-1492- BH01 (0.7M) ST-01-1492- BH01 (1.0M) ST-01-1492- BH02 (0.2M) ST-01-1492- BH02 (0.2M)	Sample Date Jun 27, 2022 Jun 27, 2022	Sampling	Matrix Soil Soil Soil Soil Soil	S22-JI00017 S22-JI00017 S22-JI00017 S22-JI00017 S22-JI00017 S22-JI00017	794) 795) 796) 797) 798)	x x x	x x x x							
Exte No 1 2 3 4 5	Sample ID Sample ID ST-01-1492- BH01 (0.2M) ST-01-1492- BH01 (0.7M) ST-01-1492- BH01 (1.0M) ST-01-1492- BH02 (0.2M) ST-01-1492- BH02 (0.4M) ST-01-1492- BH03 (0.2M)	Sample Date Jun 27, 2022	Sampling	Matrix Soil Soil Soil Soil Soil Soil	S22-JI00017 S22-JI00017 S22-JI00017 S22-JI00017 S22-JI00017	794 ; 795 ; 796 ; 797 ; 798 ;	x x x x	x x x x x							
Exte No 1 2 3 4 5 5 7	Sample ID ST-01-1492- BH01 (0.2M) ST-01-1492- BH01 (0.7M) ST-01-1492- BH01 (1.0M) ST-01-1492- BH02 (0.2M) ST-01-1492- BH02 (0.4M) ST-01-1492- BH02 (0.4M)	Sample Date Jun 27, 2022 Jun 27, 2022	Sampling	Matrix Soil Soil Soil Soil Soil	S22-JI00017 S22-JI00017 S22-JI00017 S22-JI00017 S22-JI00017 S22-JI00017	794 ;; 795 ;; 796 ;; 797 ;; 798 ;; 7990 ;; 3000 ;;	x x x x x x x x x x x x x x x x x x x	x x x x x x x							

web: www.eurofins.com.au email: EnviroSales@eurofins.com		Eurofins Environment Testing Australia Pty Ltd I ABN: 50 005 085 521 I									Eurofins Environment Testing NZ Ltd NZBN: 9429046024954		
		Melbourne Geelong Sydney 6 Monterey Road 19/8 Lewalan Street 179 Mago Dandenong South Grovedale Girraweer VIC 3175 VIC 3216 NSW 214			Magowar Road Unit 1,2 Dacre Stree aween Mitchell V 2145 ACT 2911 +61 2 9900 8400 Tel: +61 2 6113 809		Unit 1,2 Dacre Street Mitchell ACT 2911 Tel: +61 2 6113 8091	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Tel: +61 7 3902 4600 NATA# 1261 Site# 2079	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Tel: +61 2 4968 8448 94 NATA# 1261 Site# 25079	ABN: 91 05 0159 898 Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 45 51 IANZ# 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290	
	ompany Name: ddress:	K2 Enviro Suite 1A, L Gordon NSW 2768	evel 2, 802 Pacific	Highway			R P	•	2467 49 669 559		Received: Due: Priority: Contact Name:	Jul 1, 2022 12:36 F Jul 8, 2022 5 Day Kannan Kaliappan	M
Project Name: 515 CROOKWELL ROAD KINGSD Project ID: ST-01-1492				IGSDALE NSW 2580)					Euro	fins Analytical Servic	es Manager : Hanr	ah Mawbey
	Sample Detail					Moisture Set	Eurofins Suite B10						
Syd	Iney Laboratory	- NATA # 126	1 Site # 18217			Х	Х]					
9	ST-01-1492- BH04 (0.4M)	Jun 27, 2022				х	x	_					
10	ST-01-1492- BH07 (0.2M)	Jun 27, 2022	Soil	S22-JI00	01803	х	x						
11	ST-01-1492- BH07 (0.4M)	Jun 27, 2022	Soil	S22-JI00	01804	х	x						
12	ST-01-1492- BH08 (0.2M)	Jun 27, 2022	Soil	S22-JI00	01805	x	x						
13	ST-01-1492- BH08 (0.4M)	Jun 27, 2022	Soil	S22-JI00	01806	х	x						
14	ST-01-1492- BH09 (0.2M)	Jun 27, 2022	Soil	S22-JI00	01807	х	x						
15	ST-01-1492- BH10 (0.2M)	Jun 27, 2022	Soil	S22-JI00	01808	х	x						
16	ST-01-1492- BH11 (0.2M)	Jun 27, 2022	Soil	S22-JI00	01809	х	x						
17	ST-01-1492- BH11 (0.4M)	Jun 27, 2022	Soil	S22-JI00	01810	х	x						
18	ST-01-1492-	Jun 27, 2022	Soil	S22-JI00	01811	Х	Х						

Eurofins Environment Testing Australia Pty Ltd ABN: 50 005 085 521									Eurofins ARL Pty Lto ABN: 91 05 0159 898	Eurofins Environment Testing NZ Ltd NZBN: 9429046024954	
Melbourne Geelong Sydney 6 Monterey Road 19/8 Lewalan Street 179 Magowa Dandenong South Grovedale Girraween VIC 3175 VIC 3216 NSW 2145			igowar Road Unit 1,2 Dacre Street 1/21 Smallwood Place 4/52 Industri sen Mitchell Murarrie Mayrifield East 145 ACT 2911 QLD 4172 PO Box 60 V 12 9900 8400 Tel: +61 2 6113 8091 Tel: +61 7 3902 4600 Tel: +61 2 6113		re Street 1/21 Smallwood Place 4/52 Industrial Drive Murarrie Mayfield East NSW 2 QLD 4172 PO Box 60 Wickham	Perth 46-48 Banksia Road 304 Welshpool 2293 WA 6106 Tel: +61 8 6253 4444	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 45 51 IANZ# 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290			
Company Name: K2 Enviro Solutions Address: Suite 1A, Level 2, 802 Pacific Highway Gordon NSW 2768						C R P F	902467 0449 669 559	Received: Due: Priority: Contact Name:	Jul 1, 2022 12:36 F Jul 8, 2022 5 Day Kannan Kaliappan	PM	
	Project Name: 515 CROOKWELL ROAD KINGSDALE NSW 2580 Project ID: ST-01-1492					E	urofins Analytical Servi	ces Manager : Hanr	ah Mawbey		
			ample Detail			Moisture Set	Eurofins Suite B10				
	ney Laboratory					х	X				
18	ST-01-1492- SS01	Jun 27, 2022	Soil	S22-JI00	01811						
19	ST-01-1492- SS02	Jun 27, 2022	Soil	S22-JI00	01812	х	x				
20	ST-01-1492- SS03	Jun 27, 2022	Soil	S22-JI00	01813	х	x				
21	ST-01-1492- BR1	May 26, 2022	Soil	S22-JI00	01814	х	x				
-	Counts					21	21				

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

U IIIIU		
mg/kg: milligrams per kilogram	mg/L: milligrams per litre	μg/L: micrograms per litre
ppm: parts per million	ppb: parts per billion	%: Percentage
org/100 mL: Organisms per 100 millili	tres NTU: Nephelometric Turbidity Units	MPN/100 mL: Most Probable Number of organisms per 100 millilitres

Terms

Termo	
APHA	American Public Health Association
COC	Chain of Custody
СР	Client Parent - QC was performed on samples pertaining to this report
CRM	Certified Reference Material (ISO17034) - reported as percent recovery.
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
LOR	Limit of Reporting.
LCS	Laboratory Control Sample - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
SRA	Sample Receipt Advice
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
твто	Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.
TCLP	Toxicity Characteristic Leaching Procedure
TEQ	Toxic Equivalency Quotient or Total Equivalence
QSM	US Department of Defense Quality Systems Manual Version 5.4
US EPA	United States Environmental Protection Agency
WA DWER	Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank						
Total Recoverable Hydrocarbons						
TRH C6-C9	mg/kg	< 20		20	Pass	
TRH C10-C14	mg/kg	< 20		20	Pass	
TRH C15-C28	mg/kg	< 50		50	Pass	
TRH C29-C36	mg/kg	< 50		50	Pass	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
TRH C6-C10	mg/kg	< 20		20	Pass	
TRH >C10-C16	mg/kg	< 50		50	Pass	
TRH >C16-C34	mg/kg	< 100		100	Pass	
TRH >C34-C40	mg/kg	< 100		100	Pass	
Method Blank						
BTEX						
Benzene	mg/kg	< 0.1		0.1	Pass	
Toluene	mg/kg	< 0.1		0.1	Pass	
Ethylbenzene	mg/kg	< 0.1		0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2		0.2	Pass	
o-Xylene	mg/kg	< 0.1		0.1	Pass	
Xylenes - Total*	mg/kg	< 0.3		0.3	Pass	
Method Blank	ing/kg	4 0.0		0.0	1 400	
Polycyclic Aromatic Hydrocarbons				1		
Acenaphthene	mg/kg	< 0.5		0.5	Pass	
Acenaphthylene	mg/kg	< 0.5		0.5	Pass	
Anthracene	mg/kg	< 0.5		0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5		0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5		0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5		0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Chrysene	mg/kg	< 0.5		0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5		0.5	Pass	
Fluoranthene	mg/kg	< 0.5		0.5	Pass	
Fluorene	mg/kg	< 0.5		0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5		0.5	Pass	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
Phenanthrene	mg/kg	< 0.5		0.5	Pass	
Pyrene	mg/kg	< 0.5		0.5	Pass	
Total PAH*	mg/kg	< 0.5		0.5	N/A	
Method Blank	liig/kg	-		0.5		
Organochlorine Pesticides		[
Chlordanes - Total	malka	< 0.1		0.1	Pass	
4.4'-DDD	mg/kg	< 0.05		0.05	Pass	
	mg/kg					
4.4'-DDE 4.4'-DDT	mg/kg	< 0.05		0.05	Pass	
	mg/kg	< 0.05 < 0.05		0.05	Pass	
a-HCH	mg/kg			0.05	Pass	
Aldrin	mg/kg	< 0.05		0.05	Pass	
b-HCH	mg/kg	< 0.05		0.05	Pass	
d-HCH	mg/kg	< 0.05	<u> </u>	0.05	Pass	
Dieldrin	mg/kg	< 0.05		0.05	Pass	
Endosulfan I	mg/kg	< 0.05	<u> </u>	0.05	Pass	
Endosulfan II	mg/kg	< 0.05		0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05		0.05	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-HCH (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.05	0.05	Pass	
Toxaphene	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Organophosphorus Pesticides					
Azinphos-methyl	mg/kg	< 0.2	0.2	Pass	
Bolstar	mg/kg	< 0.2	0.2	Pass	
Chlorfenvinphos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos-methyl	mg/kg	< 0.2	0.2	Pass	
Coumaphos	mg/kg	< 2	2	Pass	
Demeton-S	mg/kg	< 0.2	0.2	Pass	
Demeton-O	mg/kg	< 0.2	0.2	Pass	
Diazinon	mg/kg	< 0.2	0.2	Pass	
Dichlorvos	mg/kg	< 0.2	0.2	Pass	
Dimethoate	mg/kg	< 0.2	0.2	Pass	
Disulfoton	mg/kg	< 0.2	0.2	Pass	
EPN	mg/kg	< 0.2	0.2	Pass	
Ethion	mg/kg	< 0.2	0.2	Pass	
Ethoprop	mg/kg	< 0.2	0.2	Pass	
Ethyl parathion	mg/kg	< 0.2	0.2	Pass	
Fenitrothion	mg/kg	< 0.2	0.2	Pass	
Fensulfothion	mg/kg	< 0.2	0.2	Pass	
Fenthion	mg/kg	< 0.2	0.2	Pass	
Malathion	mg/kg	< 0.2	0.2	Pass	
Merphos	mg/kg	< 0.2	0.2	Pass	
Methyl parathion	mg/kg	< 0.2	0.2	Pass	
Mevinphos	mg/kg	< 0.2	0.2	Pass	
Monocrotophos	mg/kg	< 2	2	Pass	
Naled	mg/kg	< 0.2	0.2	Pass	
Omethoate	mg/kg	< 2	2	Pass	
Phorate	mg/kg	< 0.2	0.2	Pass	
Pirimiphos-methyl	mg/kg	< 0.2	0.2	Pass	
Pyrazophos	mg/kg	< 0.2	0.2	Pass	
Ronnel	mg/kg	< 0.2	0.2	Pass	
Terbufos	mg/kg	< 0.2	0.2	Pass	
Tetrachlorvinphos	mg/kg	< 0.2	0.2	Pass	
Tokuthion	mg/kg	< 0.2	0.2	Pass	
Trichloronate	mg/kg	< 0.2	0.2	Pass	
Method Blank					
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	iiig/ky	< 5	0.1	1 435	

Test	Units	Result 1	Acceptance	Pass Limits	Qualifying Code
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery			· · ·		
Total Recoverable Hydrocarbons					
TRH C6-C9	%	98	70-130	Pass	
TRH C10-C14	%	82	70-130	Pass	
Naphthalene	%	76	70-130	Pass	
TRH C6-C10	%	90	70-130	Pass	
TRH >C10-C16	%	79	70-130	Pass	
LCS - % Recovery			· · ·		
BTEX					
Benzene	%	99	70-130	Pass	
Toluene	%	117	70-130	Pass	
Ethylbenzene	%	90	70-130	Pass	
m&p-Xylenes	%	94	70-130	Pass	
o-Xylene	%	88	70-130	Pass	
Xylenes - Total*	%	92	70-130	Pass	
LCS - % Recovery					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	95	70-130	Pass	
Acenaphthylene	%	102	70-130	Pass	
Anthracene	%	92	70-130	Pass	
Benz(a)anthracene	%	83	70-130	Pass	
Benzo(a)pyrene	%	99	70-130	Pass	
Benzo(b&j)fluoranthene	%	82	70-130	Pass	
Benzo(g.h.i)perylene	%	95	70-130	Pass	
Benzo(k)fluoranthene	%	89	70-130	Pass	
Chrysene	%	104	70-130	Pass	
Dibenz(a.h)anthracene	%	95	70-130	Pass	
Fluoranthene	%	94	70-130	Pass	
Fluorene	%	96	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	91	70-130	Pass	
Naphthalene	%	101	70-130	Pass	
Phenanthrene	%	103	70-130	Pass	
Pyrene	%	96	70-130	Pass	
LCS - % Recovery					
Organochlorine Pesticides					
Chlordanes - Total	%	108	70-130	Pass	
4.4'-DDD	%	104	70-130	Pass	
4.4'-DDE	%	107	70-130	Pass	
4.4'-DDT	%	108	70-130	Pass	
a-HCH	%	109	70-130	Pass	
Aldrin	%	102	70-130	Pass	
b-HCH	%	112	70-130	Pass	
d-HCH	%	118	70-130	Pass	
Dieldrin	%	111	70-130	Pass	
Endosulfan I	%	102	70-130	Pass	
Endosulfan II	%	121	70-130	Pass	
Endosulfan sulphate	%	96	70-130	Pass	
Endrin	%	112	70-130	Pass	
Endrin aldehyde	%	86	70-130	Pass	
Endrin ketone	%	97	70-130	Pass	
g-HCH (Lindane)	%	108	70-130	Pass	
Heptachlor	%	119	70-130	Pass	
Heptachlor epoxide	%	106	70-130	Pass	

Tes	t		Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Hexachlorobenzene			%	110		70-130	Pass	
Methoxychlor			%	114		70-130	Pass	
LCS - % Recovery				·		•		
Organophosphorus Pesticides								
Diazinon			%	121		70-130	Pass	
Dimethoate			%	117		70-130	Pass	
Ethion			%	130		70-130	Pass	
Fenitrothion			%	122		70-130	Pass	
Methyl parathion			%	93		70-130	Pass	
Mevinphos			%	126		70-130	Pass	
LCS - % Recovery					н н —			
Heavy Metals								
Arsenic			%	100		80-120	Pass	
Cadmium			%	99		80-120	Pass	
Chromium			%	92		80-120	Pass	
Copper			%	93		80-120	Pass	
Lead			%	100		80-120	Pass	
Mercury			%	100		80-120	Pass	+
Nickel			%	92		80-120	Pass	
Zinc			<u>%</u>	92		80-120	Pass	
		QA				Acceptance	Pass	Qualifying
Test	Lab Sample ID	Source	Units	Result 1		Limits	Limits	Code
Spike - % Recovery								
Total Recoverable Hydrocarbon	S			Result 1				
TRH C6-C9	R22-Jn0069172	NCP	%	116		70-130	Pass	
TRH C10-C14	N22-JI0004441	NCP	%	109		70-130	Pass	
Naphthalene	R22-Jn0069172	NCP	%	71		70-130	Pass	
TRH C6-C10	R22-Jn0069172	NCP	%	104		70-130	Pass	
TRH >C10-C16	N22-JI0004441	NCP	%	108		70-130	Pass	
Spike - % Recovery								
BTEX				Result 1				
Benzene	R22-Jn0069172	NCP	%	108		70-130	Pass	
Toluene	R22-Jn0069158	NCP	%	114		70-130	Pass	
Ethylbenzene	R22-Jn0069172	NCP	%	97		70-130	Pass	
m&p-Xylenes	R22-Jn0069172	NCP	%	100		70-130	Pass	
o-Xylene	R22-Jn0069172		%	92		70-130	Pass	
Xylenes - Total*	R22-Jn0069172	NCP	%	97		70-130	Pass	
Spike - % Recovery			/0	01		10 100	1 400	
Heavy Metals				Result 1				
Arsenic	S22-JI0007100	NCP	%	116		75-125	Pass	
Cadmium	S22-JI0007100	NCP	%	97		75-125	Pass	
Chromium	S22-JI0007100	NCP	%	118		75-125	Pass	
Copper	S22-JI0007100	NCP	%	111		75-125	Pass	
Lead	S22-JI0007100	NCP	%	113		75-125	Pass	
Mercury	S22-JI0007100	NCP	%	98		75-125	Pass	+
Nickel	S22-JI0007100	NCP	%	99		75-125	Pass	+
Zinc	S22-JI0007100	NCP	%	100		75-125	Pass	
Spike - % Recovery	022-010007100		70	100		10-120	1 435	
Organochlorine Pesticides				Result 1				
Chlordanes - Total	S22-JI0001814	СР	%	97		70-130	Pass	
4.4'-DDD	S22-JI0001814	CP CP	%	76		70-130	Pass	
		CP	<u>%</u>	96				
4.4'-DDE	S22-JI0001814	NCP	<u>%</u>			70-130	Pass	
4.4'-DDT	S22-Jn0066206	CP CP		118		70-130	Pass	
a-HCH	S22-JI0001814	-	%	91		70-130	Pass	
Aldrin	S22-JI0001814	CP	%	87		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
b-HCH	S22-Jn0066206	NCP	%	114			70-130	Pass	
d-HCH	S22-JI0001814	CP	%	85			70-130	Pass	
Dieldrin	S22-JI0001814	CP	%	98			70-130	Pass	
Endosulfan I	S22-JI0001814	CP	%	86			70-130	Pass	
Endosulfan II	S22-JI0001814	CP	%	102			70-130	Pass	
Endosulfan sulphate	S22-JI0001814	CP	%	70			70-130	Pass	
Endrin	S22-JI0001814	CP	%	83			70-130	Pass	
Endrin aldehyde	S22-JI0001814	CP	%	75			70-130	Pass	
Endrin ketone	S22-JI0001814	CP	%	93			70-130	Pass	
g-HCH (Lindane)	S22-Jn0066206	NCP	%	99			70-130	Pass	
Heptachlor	S22-JI0001814	CP	%	93			70-130	Pass	
Heptachlor epoxide	S22-JI0001814	CP	%	93			70-130	Pass	
Hexachlorobenzene	S22-JI0001814	CP	%	96			70-130	Pass	
Spike - % Recovery									
Organophosphorus Pesticides				Result 1					
Diazinon	S22-Jn0066206	NCP	%	123			70-130	Pass	
Fenitrothion	S22-Jn0066206	NCP	%	126			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate								-	
Heavy Metals				Result 1	Result 2	RPD			
Zinc	S22-JI0001555	NCP	mg/kg	95	82	15	30%	Pass	
Duplicate								-	
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S22-JI0001795	CP	mg/kg	2.2	3.5	45	30%	Fail	Q15
Cadmium	S22-JI0001795	СР	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S22-JI0001795	СР	mg/kg	150	230	42	30%	Fail	Q15
Copper	S22-JI0001795	CP	mg/kg	21	30	35	30%	Fail	Q15
Lead	S22-JI0001795	СР	mg/kg	7.8	11	32	30%	Fail	Q15
Mercury	S22-JI0001795	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S22-JI0001795	CP	mg/kg	80	120	41	30%	Fail	Q15
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S22-JI0001795	CP	%	14	15	1.7	30%	Pass	
Duplicate							-		
Polycyclic Aromatic Hydrocarbons	5			Result 1	Result 2	RPD			
Acenaphthene	S22-JI0001798	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S22-JI0001798	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S22-JI0001798	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S22-JI0001798	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S22-JI0001798	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S22-JI0001798	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S22-JI0001798	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
			mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S22-JI0001798	CP	my/ky						
Benzo(k)fluoranthene Chrysene	S22-JI0001798 S22-JI0001798	CP CP			< 0.5	<1	30%	Pass	
	S22-JI0001798 S22-JI0001798 S22-JI0001798		mg/kg	< 0.5	< 0.5 < 0.5	<1 <1	<u>30%</u> 30%	Pass Pass	
Chrysene Dibenz(a.h)anthracene	S22-JI0001798 S22-JI0001798	CP CP	mg/kg mg/kg	< 0.5 < 0.5	< 0.5	<1	30%	Pass	
Chrysene Dibenz(a.h)anthracene Fluoranthene	S22-JI0001798 S22-JI0001798 S22-JI0001798	CP CP CP	mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5	< 0.5 < 0.5	<1 <1	30% 30%	Pass Pass	
Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene	S22-JI0001798 S22-JI0001798 S22-JI0001798 S22-JI0001798	CP CP CP CP	mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5	<1 <1 <1	30% 30% 30%	Pass Pass Pass	
Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene	S22-JI0001798 S22-JI0001798 S22-JI0001798 S22-JI0001798 S22-JI0001798	CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1	30% 30% 30% 30%	Pass Pass Pass Pass	
Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene	S22-JI0001798 S22-JI0001798 S22-JI0001798 S22-JI0001798	CP CP CP CP	mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5	<1 <1 <1	30% 30% 30%	Pass Pass Pass	

Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S22-JI0001798	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S22-JI0001798	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S22-JI0001798	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S22-JI0001798	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-HCH	S22-JI0001798	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S22-JI0001798	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-HCH	S22-JI0001798	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-HCH	S22-JI0001798	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S22-JI0001798	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S22-JI0001798	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S22-JI0001798	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S22-JI0001798	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S22-JI0001798	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S22-JI0001798	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S22-JI0001798	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-HCH (Lindane)	S22-JI0001798	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S22-JI0001798	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S22-JI0001798	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S22-JI0001798	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S22-JI0001798	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Duplicate				-					
Organophosphorus Pesticide	s			Result 1	Result 2	RPD			
Azinphos-methyl	S22-JI0001798	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Bolstar	S22-JI0001798	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorfenvinphos	S22-JI0001798	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos	S22-JI0001798	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos-methyl	S22-JI0001798	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Coumaphos	S22-JI0001798	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Demeton-S	S22-JI0001798	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Demeton-O	S22-JI0001798	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Diazinon	S22-JI0001798	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dichlorvos	S22-JI0001798	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dimethoate	S22-JI0001798	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Disulfoton	S22-JI0001798	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
EPN	S22-JI0001798	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethion	S22-JI0001798	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethoprop	S22-JI0001798	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethyl parathion	S22-JI0001798	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenitrothion	S22-JI0001798	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fensulfothion	S22-JI0001798	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenthion	S22-JI0001798	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Malathion	S22-JI0001798	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Merphos	S22-JI0001798	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Methyl parathion	S22-JI0001798	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Mevinphos	S22-JI0001798	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Monocrotophos	S22-JI0001798	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Naled	S22-JI0001798	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Omethoate	S22-JI0001798	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Phorate	S22-JI0001798	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pirimiphos-methyl	S22-JI0001798	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pyrazophos	S22-JI0001798	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ronnel	S22-JI0001798	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Terbufos	S22-JI0001798	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tetrachlorvinphos	S22-JI0001798	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	

			Result 1	Result 2	RPD			
S22-JI0001798	CP	ma/ka				30%	Pass	
				1 1				
	01	iiig/kg	0.2	V 0.2	1	0070	1 400	
			Result 1	Result 2	RPD			
S22-110001800	CP	ma/ka				30%	Pass	
				1 1				
322-310001800		піу/ку	< 20	< 20	<1	30 %	газэ	
			Pocult 1	Popult 2			1	
S22 110001900	СР	malka				20%	Bass	
				1 1				
				1 1				
				1 1				
				1 1				
S22-JI0001800	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
					DDE			
000 110								
							+ +	
				1				
				1				
							1 1	
S22-JI0001801	CP	mg/kg	< 100	< 100	<1	30%	Pass	
			-	1 1			-	
I			Result 1	Result 2				
S22-JI0001805	CP	%	13	16	18	30%	Pass	
			1	1 1		1	-	
I			Result 1	Result 2	RPD			
S22-JI0001811		mg/kg	< 20	< 20	<1	30%	Pass	
S22-JI0001811	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
S22-JI0001811	CP	mg/kg	< 20	< 20	<1	30%	Pass	
			T			1	-	
			Result 1	Result 2	RPD			
S22-JI0001811	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
S22-JI0001811	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
S22-JI0001811	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
S22-JI0001811	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
S22-JI0001811	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
S22-JI0001811	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
3			Result 1	Result 2	RPD			
S22-JI0002435	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
022 010002400			1				Dees	
S22-JI0002435	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
	NCP NCP	mg/kg mg/kg	< 0.5 1.2	< 0.5 0.7	<u><1</u> 58	30% 30%	Fail	Q15
S22-JI0002435 S22-JI0002435			1.2	0.7				Q15
S22-JI0002435 S22-JI0002435 S22-JI0002435	NCP	mg/kg mg/kg	1.2 < 0.5	0.7 < 0.5	58 <1	30%	Fail	Q15 Q15
S22-JI0002435 S22-JI0002435 S22-JI0002435 S22-JI0002435	NCP NCP NCP	mg/kg mg/kg mg/kg	1.2 < 0.5 0.6	0.7 < 0.5 < 0.5	58 <1 65	30% 30% 30%	Fail Pass Fail	
S22-JI0002435 S22-JI0002435 S22-JI0002435 S22-JI0002435 S22-JI0002435	NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg	1.2 < 0.5 0.6 < 0.5	0.7 < 0.5 < 0.5 < 0.5	58 <1 65 <1	30% 30% 30% 30%	Fail Pass Fail Pass	Q15
S22-JI0002435 S22-JI0002435 S22-JI0002435 S22-JI0002435 S22-JI0002435 S22-JI0002435	NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg	1.2 < 0.5 0.6 < 0.5 0.7	0.7 < 0.5 < 0.5 < 0.5 < 0.5	58 <1 65 <1 63	30% 30% 30% 30% 30%	Fail Pass Fail Pass Fail	Q15 Q15
S22-JI0002435 S22-JI0002435 S22-JI0002435 S22-JI0002435 S22-JI0002435 S22-JI0002435 S22-JI0002435 S22-JI0002435 S22-JI0002435	NCP NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg	1.2 < 0.5 0.6 < 0.5 0.7 1.5	0.7 < 0.5 < 0.5 < 0.5 < 0.5 0.8	58 <1 65 <1 63 64	30% 30% 30% 30% 30%	Fail Pass Fail Pass Fail Fail	Q15
S22-JI0002435 S22-JI0002435 S22-JI0002435 S22-JI0002435 S22-JI0002435 S22-JI0002435 S22-JI0002435 S22-JI0002435 S22-JI0002435 S22-JI0002435 S22-JI0002435 S22-JI0002435	NCP NCP NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1.2 < 0.5 0.6 < 0.5 0.7 1.5 < 0.5	0.7 < 0.5 < 0.5 < 0.5 < 0.5 0.8 < 0.5	58 <1 65 <1 63 64 <1	30% 30% 30% 30% 30% 30% 30%	Fail Pass Fail Pass Fail Fail Pass	Q15 Q15 Q15
S22-JI0002435 S22-JI0002435 S22-JI0002435 S22-JI0002435 S22-JI0002435 S22-JI0002435 S22-JI0002435 S22-JI0002435 S22-JI0002435	NCP NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg	1.2 < 0.5 0.6 < 0.5 0.7 1.5	0.7 < 0.5 < 0.5 < 0.5 < 0.5 0.8	58 <1 65 <1 63 64	30% 30% 30% 30% 30%	Fail Pass Fail Pass Fail Fail	Q15 Q15
	S22-JI0001811 S22-JI0001811 S22-JI0001811 S22-JI0001811 S22-JI0001811 S22-JI0001811 S22-JI0001811	S22-JI0001798 CP S22-JI0001800 CP S22-JI0001801 CP S22-JI0001811 CP S22-JI	S22-JI0001798 CP mg/kg S22-JI0001800 CP mg/kg S22-JI0001801 CP mg/kg S22-JI0001811 CP mg/kg S22-JI0001811 CP mg/kg S22-JI0001811 CP mg/kg S22-JI0001811 CP mg/kg <td>S22-JI0001798 CP mg/kg < 0.2 S22-JI0001800 CP mg/kg < 20</td> S22-JI0001800 CP mg/kg < 0.5	S22-JI0001798 CP mg/kg < 0.2 S22-JI0001800 CP mg/kg < 20	S22-JI0001798 CP mg/kg < 0.2 < 0.2 S22-JI0001798 CP mg/kg < 0.2	S22-JI0001798 CP mg/kg < 0.2 < 0.2 < 1 S22-JI0001798 CP mg/kg < 0.2	S22-JI0001798 CP mg/kg < 0.2 < 0.2 < 1 30% S22-JI0001798 CP mg/kg < 0.2	S22-JI0001798 CP mg/kg < 0.2 < 0.2 < 1 30% Pass S22-JI0001798 CP mg/kg < 0.2

Duplicate									
Polycyclic Aromatic Hydrocarbon	s			Result 1	Result 2	RPD			
Naphthalene	S22-JI0002435	NCP	mg/kg	0.6	< 0.5	71	30%	Fail	Q15
Phenanthrene	S22-JI0002435	NCP	mg/kg	4.1	1.6	64	30%	Fail	Q15
Pyrene	S22-JI0002435	NCP	mg/kg	2.4	1.0	65	30%	Fail	Q15
Duplicate				1					
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S22-JI0002435	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S22-JI0002435	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S22-JI0002435	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S22-JI0002435	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-HCH	S22-JI0002435	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S22-JI0002435	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-HCH	S22-JI0002435	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-HCH	S22-JI0002435	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S22-JI0002435	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S22-JI0002435	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S22-JI0002435	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S22-JI0002435	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S22-JI0002435	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S22-JI0002435	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S22-JI0002435	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-HCH (Lindane)	S22-JI0002435	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S22-JI0002435	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S22-JI0002435	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S22-JI0002435	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S22-JI0002435	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Toxaphene	S22-JI0002435	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate				1					
Organophosphorus Pesticides	1			Result 1	Result 2	RPD			
Azinphos-methyl	S22-JI0002435	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Bolstar	S22-JI0002435	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorfenvinphos	S22-JI0002435	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos	S22-JI0002435	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos-methyl	S22-JI0002435	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Coumaphos	S22-JI0002435	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Demeton-S	S22-JI0002435	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Demeton-O	S22-JI0002435	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Diazinon	S22-JI0002435	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dichlorvos	S22-JI0002435	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dimethoate	S22-JI0002435	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Disulfoton	S22-JI0002435	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
EPN	S22-JI0002435	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethion	S22-JI0002435	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethoprop	S22-JI0002435	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethyl parathion	S22-JI0002435	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenitrothion	S22-JI0002435	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fensulfothion	S22-JI0002435	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenthion	S22-JI0002435	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Malathion	S22-JI0002435	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Merphos	S22-JI0002435	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
	S22-JI0002435	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Methyl parathion									
Mevinphos	S22-JI0002435	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Mevinphos Monocrotophos	S22-JI0002435 S22-JI0002435	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Mevinphos	S22-JI0002435				1				

Duplicate											
Organophosphorus Pesticide	es			Result 1	Result 2	RPD					
Phorate	S22-JI0002435	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass			
Pirimiphos-methyl	S22-JI0002435	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass			
Pyrazophos	S22-JI0002435	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass			
Ronnel	S22-JI0002435	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass			
Terbufos	S22-JI0002435	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass			
Tetrachlorvinphos	S22-JI0002435	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass			
Tokuthion	S22-JI0002435	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass			
Trichloronate	S22-JI0002435	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass			

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code	Description
G01	The LORs have been raised due to matrix interference
N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
N07	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs
Q09	The Surrogate recovery is outside of the recommended acceptance criteria due to matrix interference. Acceptance criteria were met for all other QC

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised by:

Hannah Mawbey	Analytical Services Manager
Charl Du Preez	Senior Analyst-Organic
Gabriele Cordero	Senior Analyst-Metal
Roopesh Rangarajan	Senior Analyst-Organic
Roopesh Rangarajan	Senior Analyst-Volatile

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

•		C :	Eurofins Envi		ting Australia	Pty Ltd					Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environment Testing NZ Ltd NZBN: 9429046024954		
eb: ww	6 Monterey Road 19/8 Lewalan Street 17/ Dandenong South Grovedale Gir w.eurofins.com.au VIC 3175 VIC 3216 NS tviroSales@eurofins.com NATA# 1261 Site# 1254 NATA# 1261 Site# 1254 NATA# 1261 Site# 1254				Sydney 179 Mago Girraweer NSW 214 Tel: +61 2 NATA# 12	n 5 2 9900 8	400	Canberra Unit 1,2 Dacre Street Mitchell ACT 2911 Tel: +61 2 6113 8091 7	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Tel: +61 7 3902 4600 NATA# 1261 Site# 20794	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Tel: +61 2 4968 8448 44 NATA# 1261 Site# 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 45 51 IANZ# 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290	
	npany Name: dress:		olutions evel 2, 802 Pa	cific Highwa	ay			Re Ph	•	2467 49 669 559		Due: Priority:	Jul 1, 2022 12:36 F Jul 8, 2022 5 Day Kannan Kaliappan	PM
	ject Name: ject ID:	515 CROOK ST-01-1492) KINGSDA	LE NSW 2580)					Euro	fins Analytical Servic	es Manager : Hanr	nah Mawbey
			ample Detail				Moisture Set	Eurofins Suite B10						
	ey Laboratory -		Site # 18217				X	Х	4					
Exter No	nal Laboratory Sample ID	Sample Date	Sampling Time	Matrix	LAB	BID			-					
	ST-01-1492- BH01 (0.2M)	Jun 27, 2022		Soil	S22-JI00	01794	х	х						
	ST-01-1492- BH01 (0.7M)	Jun 27, 2022		Soil	S22-JI00		х	х						
_	ST-01-1492- BH01 (1.0M)	Jun 27, 2022		Soil	S22-JI00		x	х	-					
	BH02 (0.2M)	Jun 27, 2022		Soil	S22-JI00		x	Х	-					
5	ST-01-1492- BH02 (0.4M)	Jun 27, 2022		Soil	S22-JI00		х	Х	-					
	- (-)			Call	IS22-JI00	01799	x	х						
6	ST-01-1492- BH03 (0.2M)	Jun 27, 2022		Soil					4					
6 7	ST-01-1492- BH03 (0.2M)	Jun 27, 2022 Jun 27, 2022 Jun 27, 2022		Soil	S22-JI00 S22-JI00		x	Х	-					

	Eurofins Environment Testing Australia ABN: 50 005 085 521 Melbourne Geelong									Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environm NZBN: 9429046024954	-
veb: www.eurofins.com.au email: EnviroSales@eurofins.c		Melbourne 6 Monterey Road Dandenong South VIC 3175 Tel: +61 3 8564 5000	Geelong 19/8 Lewalan Street Grovedale VIC 3216 Tel: +61 3 8564 5000 54 NATA# 1261 Site# 123		n 5 : 9900 84	400	Canberra Unit 1,2 Dacre Street Mitchell ACT 2911 Tel: +61 2 6113 8091 7	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Tel: +61 7 3902 4600 NATA# 1261 Site# 20794	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Tel: +61 2 4968 8448 44 NATA# 1261 Site# 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 45 51 IANZ# 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290
Company Name: Address:	K2 Enviro S Suite 1A, Le Gordon NSW 2768	Solutions evel 2, 802 Pacific	Highway			Re Ph	•	2467 19 669 559		Due: Priority:	Jul 1, 2022 12:36 F Jul 8, 2022 5 Day Kannan Kaliappan	ΡM
Project Name: Project ID:	515 CROO ST-01-1492		NGSDALE NSW 258	80					Euro	fins Analytical Service	es Manager : Hanr	nah Mawbey
	S	ample Detail			Moisture Set	Eurofins Suite B10						
Sydney Laboratory -	NATA # 1261	Site # 18217			х	Х						
9 ST-01-1492- BH04 (0.4M)	Jun 27, 2022	Soil	S22-JIC	0001802	х	х						
10 ST-01-1492- BH07 (0.2M)	Jun 27, 2022	Soil		0001803	х	х						
11 ST-01-1492- BH07 (0.4M)	Jun 27, 2022	Soil	S22-JIC	0001804	х	х						
12 ST-01-1492- BH08 (0.2M)	Jun 27, 2022	Soil	S22-JIC	0001805	х	х						
13 ST-01-1492- BH08 (0.4M)	Jun 27, 2022	Soil	S22-JIC	0001806	х	х						
	Jun 27, 2022	Soil	S22-JIC	0001807	х	х						
	Jun 27, 2022	Soil	S22-JIC	0001808	х	х						
16 ST-01-1492- BH11 (0.2M)	Jun 27, 2022	Soil	S22-JIC	0001809	х	х						
17 ST-01-1492- BH11 (0.4M)	Jun 27, 2022	Soil	S22-JIC	0001810	х	х						

•	0.000	files	Eurofins Environm ABN: 50 005 085 521	ent Testing Australia	Pty Ltd					Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environment Testing NZ Ltd NZBN: 9429046024954		
eb: w	6 Monterey Road 19/8 Lewalan Street 179 Dandenong South Grovedale Girr VIC 3175 VIC 3216 NSV			Sydney 179 Magowa Girraween NSW 2145 Tel: +61 2 9 NATA# 126	900 840	Mitchell ACT 2911 0 Tel: +61 2 6113 8091	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Tel: +61 7 3902 4600 NATA# 1261 Site# 2075	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Tel: +61 2 4968 8448 94 NATA# 1261 Site# 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 45 51 IANZ# 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290		
	ompany Name: Idress:	K2 Enviro S Suite 1A, L Gordon NSW 2768	evel 2, 802 Pacific I	Highway			•	2467 49 669 559		Received: Due: Priority: Contact Name:	Jul 1, 2022 12:36 F Jul 8, 2022 5 Day Kannan Kaliappan	PM	
	oject Name: oject ID:	515 CROO ST-01-1492		GSDALE NSW 2580)				Euro	fins Analytical Servic	es Manager : Hanr	nah Mawbey	
		s	ample Detail			Moisture Set	Furofios Suite B10						
	ney Laboratory					X	x						
8	ST-01-1492- SS01	Jun 27, 2022	Soil	S22-JI00	01811								
9	ST-01-1492- SS02	Jun 27, 2022	Soil	S22-JI00	01812	х	x						
	ST-01-1492- SS03	Jun 27, 2022	Soil	S22-JI00	01813	х	x						
20	0000				04044								
20 21	ST-01-1492- BR1	May 26, 2022	Soil	S22-JI00	01814	X	X						

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521		
Melbourne	Geelong	Sydney
6 Monterey Road	19/8 Lewalan Street	179 Magowar Road
Dandenong South	Grovedale	Girraween
VIC 3175	VIC 3216	NSW 2145
Tel: +61 3 8564 5000	Tel: +61 3 8564 5000	Tel: +61 2 9900 8400
NATA# 1261 Site# 1254	NATA# 1261 Site# 1254	NATA# 1261 Site# 18217

Canberra Brisbane Unit 1.2 Dacre Street 1/21 Smallwood Place Mitchell Murarrie ACT 2911 QLD 4172 Tel: +61 2 6113 8091 Tel: +61 7 3902 4600

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Tel: +61 2 4968 8448 NATA# 1261 Site# 20794 NATA# 1261 Site# 25079

ABN: 91 05 0159 898 Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370

www.eurofins.com.au

Eurofins ARL Pty Ltd Eurofins Environment Testing NZ Ltd NZBN: 9429046024954 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 45 51

IANZ# 1327

EnviroSales@eurofins.com

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290

Sample Receipt Advice

Company name:	K2 Enviro Solutions
Contact name:	Kannan Kaliappan
Project name:	515 CROOKWELL ROAD KINGSDALE NSW 2580
Project ID:	ST-01-1492
Turnaround time:	5 Day
Date/Time received	Jul 1, 2022 12:36 PM
Eurofins reference	902467

Sample Information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table. 1
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace. J
- X Split sample sent to requested external lab.
- X Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Hannah Mawbey on phone : or by email: HannahMawbey@eurofins.com

Results will be delivered electronically via email to Kannan Kaliappan - kannan@k2envirosolutions.com.au.

Global Leader - Results you can trust

ny	K2 CONSULTING GROU	JP	Proj	ject Na	ST-01-1492			Project Manager	KANNAN	ALIAPPAN		Sampler(s)	KA	NNAN KAI	LAPPAN	Emilen
\$5	SUITE 222 LEVEL 2, 205	B LEXINGTON DRIVE, BEL	Proje	ot Name	515 Crookw	il Road, Kingsda	NSW 2580	EOD Format EStat EQUIS et				Handed over by				Ernail
ness	VISTA NSW 2153			Zn, Hg)								Email for Invoic	ka	nnan@	k2consultinggroup.com.au	Vectured
t Name	KANNAN KALIAPPAN			и, N', Pb,								Email for Result	ka	nnan@	k2consullinggroup.com.au	5.00
ne Ne	61449669559			C, C,								Co Change containe	ntainers Noe 5 size frie	or sary	Required Turnaround Time (TAT) Design at the 5 days if politiked.	20/6
Pirections			As.Cd	B10 Lats (As, (lines)	Overnight (reporting by Sern)	e-coc Email-sent vecened 30/6 10:44 AM
se Order				SUITE OPP, Ma								8 8 8	Tal Cottle	IDPE) WA Guide	□ Same day● □ 1 day● □ 2 days● □ 3 days●	10:44 AM
ID Nº			-	H, OCP,								500mL Plastic 259mL Plastic 125mL Plastic	40mL VOA vial 0mL PFAS Both	Jar (Glass or HDPE) (sbestos A34964, WA Gald	 5 days (Standard) Other(
		Sampted	Matrix	SUITE B10 TRH, BTEXN, PAH, OCP, OPP, Malab (As, Cd, Cr, Cu, N, Pb, Zn,								25 25	40r 500ml	Jar (G	4	~
	Client Sample ID	Date/Time oc.mm/y/thimn	Sala (S) Newr (N)	TRH, BI					E					Other	Sample Comments / Dangerous Goods Hazard Warning	Decasta
	3T-01-1492-BH01 (0.2m)	27.86.2022/ 10:00	8	X										1		Pecenel 01/07
1	3T-01-1492-BH01 (0.7m)	27.06.2022/ 10:00	\$	X										1	HOLD	01/07
1	ST-01-1492-BH01 (1.0m)	27.06.2022/ 10:00	S	X										1	HOLD	2/04
8	3T-01-1492-8H02 (0.2m)	27.06.2022/ 10:00	s	X										1		1250PM
8	1T-01-1492-BH02 (0,4m)	27,96,2022/ 10:00	5	X										1	HOLD	John Dome
1	17-01-1492-BH03 (0.2m)	27,06,2022/ 10:00	s	X										1		Kelvin Foorg
	17-91-1492-BH03 (0.5m)	27.06.2022/ 10:00	s	X										1	HOLD	Counter
5	iT-01-1492-IBH04 (0.2m)	27,06,2022/ 10:00	3	X										1		ilpol.
ş	iT-01-1492-BH04 (0.4m)	27.06,2022/ 10:00	8	X										1	HOLD	chine
ę	iT-01-1492-BH07 (0.2m)	27,06,2022/ 10:00	s	X										1		
E	17-01-1492-BH07 (0,4m)	27,08,2022/ 10:00	5	X										1	HOLD	13,86-1.20
8	T-01-1492-BH08 (0.2m)	27.06.2022/ 10:00	8	X										1		~
8	T-01-1492-BH08 (0.4m)	27.06.2022/ 10:00	8	X										1	HOLD	5 65
8	T-01-1492-8H09 (0.2m)	27.06.2022/ 10:00	\$	X										1		([
8	T-01-1492-BH10 (0,2m)	27,06,2022/ 10:00	S	X										1		ā
5	T-01-1492-BH11 (0.2m)	27.96,2022/ 10:00	8	X							-			1		12 -36 PM Kelun Puong Counter chilled. 13,8°C - 1.26 12.6°C Sto TAT
8	T-01-1492-BH11 (0.4m)	27.96,2022/ 10:00	s	X										1	HOLD	STO TAT
	ST-01-1492-8501	27,06,2022/ 10:00	S	X										1		
	ST-01-1492-SB02	27.96.2022/ 10:00	8	X										1	HOLD	HOADING
	ST-01-1492-SS03	27.06,2022/ 10:00	s	X										1		#902467
	ST-01-1493-BR1	26,05,2022/ 69:00	5	X										6		
		Total Count	5	10										21		
od af nent	Courier (#) D H	and Defivered	0	Postal	Name	KANNAN	KALJAPPAN	Signature	April		Date	30th Jun	e 2022	Time 9:45am	
ory Use O	Received By			SYD BNE	MEL PER A	ol NTL ORW	Signatura			Date		Time			Temperature	

K2 Enviro Solutions Suite 1A, Level 2, 802 Pacific Highway Gordon NSW 2768

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention:

Kannan Kaliappan

Report Project name Project ID Received Date 908025-S ADDITIONAL-515 CROOKWELL ROAD KINGSDALE NSW 2580

ST-01-1492 Jul 21, 2022

Client Sample ID			ST-01-1492- BH08 (0.4M)
Sample Matrix			Soil
Eurofins Sample No.			S22-JI0045903
Date Sampled			Jun 27, 2022
Test/Reference	LOR	Unit	
	_	_	
% Clay	1	%	49
Conductivity (1:5 aqueous extract at 25 °C as rec.)	10	uS/cm	830
pH (1:5 Aqueous extract at 25 °C as rec.)	0.1	pH Units	4.5
% Moisture	1	%	24
Cation Exchange Capacity			
Cation Exchange Capacity	0.05	meq/100g	19

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
% Clay	Brisbane	Jul 27, 2022	14 Days
- Method: LTM-GEN-7040			
pH (1:5 Aqueous extract at 25 °C as rec.)	Sydney	Jul 22, 2022	7 Days
- Method: LTM-GEN-7090 pH by ISE			
Conductivity (1:5 aqueous extract at 25 °C as rec.)	Melbourne	Jul 26, 2022	7 Days
- Method: LTM-INO-4030 Conductivity			
Cation Exchange Capacity	Melbourne	Jul 26, 2022	28 Days
- Method: LTM-MET-3060 Cation Exchange Capacity by bases & Exchangeable Sodium Percentage			
% Moisture	Sydney	Jul 22, 2022	14 Days

- Method: LTM-GEN-7080 Moisture

•	0.0.40	6:	Eurofins Env ABN: 50 005 08		ting Australia P	ty Ltd						Eurofins ARL Pty Ltd ABN: 91 05 0159 898	NZBN: 9429046024954	ent Testing NZ Lto
web: wv	WW.eurofins.com.au		Melbourne 6 Monterey Roa Dandenong Sou VIC 3175 Tel: +61 3 8564 NATA# 1261 Si	uth Groved VIC 32 5000 Tel: +6	ewalan Street dale 16	Sydney 179 Mago Girrawee NSW 214 Tel: +61 2 NATA# 1	n 5 2 9900 8	8400	Mitch ACT Tel: +	1,2 Dac ell	Murarrie Mayfield East NSW 2304 QLD 4172 PO Box 60 Wickham 229	Tel: +61 8 6253 4444	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 45 51 IANZ# 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290
	Company Name: K2 Enviro Solutions Address: Suite 1A, Level 2, 802 Pacific Highway Gordon NSW 2768						R	rder N eport hone: ax:	#:	908025 0449 669 559	Received: Due: Priority: Contact Name:	Jul 21, 2022 3:28 P Jul 28, 2022 5 Day Kannan Kaliappan	Μ	
	oject Name: oject ID:	ADDITIONA ST-01-1492		OKWELL ROA	AD KINGSDAL	E NSW	/ 2580)			Eur	ofins Analytical Servio	ces Manager : Hann	ah Mawbey
		Sa	ample Detail	I			% Clay	pH (1:5 Aqueous extract at 25 °C as rec.)	Moisture Set	Cation Exchange Capacity				
Melb	ourne Laborato	ory - NATA # 12	261 Site # 12	254					х	х				
	ney Laboratory							Х	х					
	bane Laborator		1 Site # 207	94			Х							
Exte No	rnal Laboratory Sample ID	Sample Date	Sampling Time	Matrix	LAB	ID								
1	ST-01-1492- BH08 (0.4M)	Jun 27, 2022	10:00AM	Soil	S22-JI004	5903	х	х	х	x				
	Counts						1	1	1	1				

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

U IIIIU		
mg/kg: milligrams per kilogram	mg/L: milligrams per litre	μg/L: micrograms per litre
ppm: parts per million	ppb: parts per billion	%: Percentage
org/100 mL: Organisms per 100 mi	lilitres NTU: Nephelometric Turbidity Units	MPN/100 mL: Most Probable Number of organisms per 100 millilitres

Terms

Terms	
APHA	American Public Health Association
COC	Chain of Custody
CP	Client Parent - QC was performed on samples pertaining to this report
CRM	Certified Reference Material (ISO17034) - reported as percent recovery.
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
LOR	Limit of Reporting.
LCS	Laboratory Control Sample - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
SRA	Sample Receipt Advice
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
твто	Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.
TCLP	Toxicity Characteristic Leaching Procedure
TEQ	Toxic Equivalency Quotient or Total Equivalence
QSM	US Department of Defense Quality Systems Manual Version 5.4
US EPA	United States Environmental Protection Agency
WA DWER	Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code		
Method Blank									
Cation Exchange Capacity									
Cation Exchange Capacity			meq/100g	< 0.05			0.05	Pass	
LCS - % Recovery									
% Clay			%	97			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
				Result 1	Result 2	RPD			
Conductivity (1:5 aqueous extract at 25 °C as rec.)	M22-JI0050479	NCP	uS/cm	260	270	2.9	30%	Pass	
pH (1:5 Aqueous extract at 25 °C as rec.)	S22-JI0043773	NCP	pH Units	7.1	7.2	<1	30%	Pass	
% Moisture	S22-JI0046197	NCP	%	17	16	5.1	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Authorised by:

Quinn Raw Scott Beddoes Jonathon Angell Ryan Phillips Charl Du Preez Scott Beddoes

Analytical Services Manager Senior Analyst-Metal Senior Analyst-Inorganic Senior Analyst-Inorganic Senior Analyst-Sample Properties Senior Analyst-Inorganic

Glenn Jackson

General Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service
- Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

K2 Enviro Solutions Suite 1A, Level 2, 802 Pacific Highway Gordon NSW 2768

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention:

-INV'S & STMNTS - Kannan Kaliappan

Report Project name Project ID Received Date 907245-L ADDITIONAL - 515 CROOKWELL ROAD KINGSDALE ADDITIONAL - ST-01-1492 Jul 18, 2022

Client Sample ID			ST-01-1492- BH01 (0.2m)	ST-01-1492- BH01 (1.0m)	ST-01-1492- BH02 (0.4m)	ST-01-1492- BH03 (0.2m)
Sample Matrix			AUS Leachate	AUS Leachate	AUS Leachate	AUS Leachate
Eurofins Sample No.			S22-JI0040102	S22-JI0040103	S22-JI0040104	S22-JI0040105
Date Sampled			Jun 27, 2022	Jun 27, 2022	Jun 27, 2022	Jun 27, 2022
Test/Reference	LOR	Unit				
Chromium (hexavalent)	0.005	mg/L	< 0.005	< 0.005	0.010	< 0.005
Chromium (trivalent)	0.005	mg/L	0.35	< 0.05	0.18	0.16
Heavy Metals						
Chromium	0.05	mg/L	0.35	< 0.05	0.19	0.16
AUS Leaching Procedure						
Leachate Fluid ^{C01}		comment	4.0	4.0	4.0	4.0
pH (initial)	0.1	pH Units	6.7	7.0	7.9	7.4
pH (Leachate fluid)	0.1	pH Units	6.0	6.0	6.0	6.0
pH (off)	0.1	pH Units	6.0	4.3	7.1	6.4

Client Sample ID			ST-01-1492- BH04 (0.4m)	ST-01-1492- BH08 (0.2m)	ST-01-1492- BH11 (0.2m)	ST-01-1492- SS02
Sample Matrix			AUS Leachate	AUS Leachate	AUS Leachate	AUS Leachate
Eurofins Sample No.			S22-JI0040106	S22-JI0040107	S22-JI0040108	S22-JI0040109
Date Sampled			Jun 27, 2022	Jun 27, 2022	Jun 27, 2022	Jun 27, 2022
Test/Reference	LOR	Unit				
Chromium (hexavalent)	0.005	mg/L	0.011	0.014	0.016	< 0.005
Chromium (trivalent)	0.005	mg/L	0.20	0.11	0.044	< 0.05
Heavy Metals						
Chromium	0.05	mg/L	0.21	0.12	0.06	< 0.05
AUS Leaching Procedure						
Leachate Fluid ^{C01}		comment	4.0	4.0	4.0	4.0
pH (initial)	0.1	pH Units	7.7	6.4	7.1	8.0
pH (Leachate fluid)	0.1	pH Units	6.0	6.0	6.0	6.0
pH (off)	0.1	pH Units	6.8	5.0	5.4	4.4

		C :	Eurofins Env	rironment Testing	Australia P	ty Ltd						Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environm NZBN: 9429046024954	-
6 Monterey Dandenong VIC 3175 Tel: +61 3 8			Melbourne 6 Monterey Road Dandenong Sou VIC 3175 Tel: +61 3 8564	d 19/8 Lewals th Grovedale VIC 3216	an Street 3564 5000	Sydney 179 Mago Girraweer NSW 214 Tel: +61 2 NATA# 12	n 5 2 9900 8	3400	Canberra Unit 1,2 Dacre Street Mitchell ACT 2911 Tel: +61 2 6113 8091 7	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Tel: +61 7 3902 4600 NATA# 1261 Site# 20794	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Tel: +61 2 4968 8448 4 NATA# 1261 Site# 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 45 51 IANZ# 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290
	mpany Name: dress:	K2 Enviro S Suite 1A, Le Gordon NSW 2768		acific Highway				Re Pl	•	245 9 669 559		Due: Priority:	Jul 18, 2022 11:12 Jul 25, 2022 5 Day -INV'S & STMNTS	
	oject Name: oject ID:		NL - 515 CRO NL - ST-01-14	OKWELL ROAD 92) KINGSDA	LE					Euro	fins Analytical Servic	es Manager : Hanr	nah Mawbey
Sample Detail						AUS Leaching Procedure	Chromium (speciated)							
Sydı	ney Laboratory -	- NATA # 1261	Site # 18217	7			Х	Х						
	rnal Laboratory		Comelle	Motrice		10			4					
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB				-					
1	ST-01-1492- BH01 (0.2m)	Jun 27, 2022		AUS Leachate			х	х	-					
2	ST-01-1492- BH01 (1.0m)	Jun 27, 2022		AUS Leachate	S22-JI004	0103	х	х						
3	ST-01-1492- BH02 (0.4m)	Jun 27, 2022		AUS Leachate	S22-JI004	0104	х	Х						
4	ST-01-1492- BH03 (0.2m)	Jun 27, 2022		AUS Leachate	S22-JI004	0105	х	х						
5	ST-01-1492- BH04 (0.4m)	Jun 27, 2022		AUS Leachate	S22-JI004	0106	х	х						
6	ST-01-1492- BH08 (0.2m)	Jun 27, 2022		AUS Leachate	S22-JI004	0107	х	х						
7	ST-01-1492- BH11 (0.2m)	Jun 27, 2022		AUS Leachate	S22-JI004	0108	х	х						
8	ST-01-1492- SS02	Jun 27, 2022		AUS Leachate	S22-JI004	0109	х	х]					

••• ourof	Eurofins Environme ABN: 50 005 085 521	rofins Environment Testing Australia Pty Ltd N: 50 005 085 521							Eurofins ARL Pty LtdEurofins EnvironmerABN: 91 05 0159 898NZBN: 9429046024954		
veb: www.eurofins.com.au mail: EnviroSales@eurofins.co		Melbourne 6 Monterey Road Dandenong South VIC 3175 Tel: +61 3 8564 5000 NATA# 1261 Site# 1254	Geelong 19/8 Lewalan Street Grovedale VIC 3216 Tel: +61 3 8564 5000 NATA# 1261 Site# 1254	Sydney 179 Magowar Girraween NSW 2145 Tel: +61 2 990 NATA# 1261	0 8400	Canberra Unit 1,2 Dacre Street Mitchell ACT 2911 Tel: +61 2 6113 8091 17	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Tel: +61 7 3902 4600 NATA# 1261 Site# 2075	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Tel: +61 2 4968 8448 24 NATA# 1261 Site# 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 45 51 IANZ# 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290
Company Name: Address:	K2 Enviro S Suite 1A, L Gordon NSW 2768	evel 2, 802 Pacific H	lighway		R	•	7245 49 669 559		Received: Due: Priority: Contact Name:	Jul 18, 2022 11:12 / Jul 25, 2022 5 Day -INV'S & STMNTS -	
Project Name: Project ID:	-	AL - 515 CROOKWI AL - ST-01-1492	ELL ROAD KINGSD	ALE				Euro	fins Analytical Servic	es Manager : Hann	ah Mawbey
				AUS Les	Chromiu						
	S	Sample Detail		Leaching Procedure	Chromium (speciated)						
Sydney Laboratory - I											

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Chromium (speciated)	-		_
Chromium (hexavalent)	Sydney	Jul 22, 2022	28 Days
- Method: In-house method E057.2			
Chromium (trivalent)	Sydney	Jul 20, 2022	28 Days
- Method: E043 /E057 Total Speciated Chromium			
Heavy Metals	Sydney	Jul 22, 2022	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
AUS Leaching Procedure	Sydney	Jul 22, 2022	7 Days

- Method: LTM-GEN-7010 Leaching Procedure for Soils & Solid Wastes

	Eurofins Environment Testing Australia Pty I ABN: 50 005 085 521											Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environm NZBN: 9429046024954	-
web: w	Dandenong South Grovedale Girrawe VIC 3175 VIC 3216 NSW 2			9 Magowar rraween SW 2145 I: +61 2 990	agowar Road Unit 1,2 Dacre Street 1/21 Smallwood Place 4/52 Industrial Drive een Mitchell Murarrie Mayfield East NSW 2304 1/14 ACT 2911 QLD 4172 PO Box 60 Wickham 2291 1 2 9900 8400 Tel: +61 2 6113 8091 Tel: +61 7 3902 4600 Tel: +61 2 4968 8448					Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 45 51 IANZ# 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290		
	Company Name:K2 Enviro SolutionsAddress:Suite 1A, Level 2, 802 Pacific HighwayGordonNSW 2768							Order No.: Report #: Phone: Fax:		245 9 669 559	Received: Due: Priority: Contact Name:	Jul 18, 2022 11:12 AM Jul 25, 2022 5 Day -INV'S & STMNTS - Kannan		
	oject Name: oject ID:		L - 515 CRO L - ST-01-14	OKWELL ROAD 92) KINGSDALE	Ξ					Eur	ofins Analytical Servic	es Manager : Hanr	nah Mawbev
	Sample Detail					AUS Leaching Procedure								
Syd	ney Laboratory	- NATA # 1261	Site # 18217	,		>		x						
Exte No	ernal Laboratory Sample ID	/ Sample Date	Sampling Time	Matrix	LAB ID			_						
1	ST-01-1492- BH01 (0.2m)	Jun 27, 2022	TIME	AUS Leachate	S22-JI00401	02 >	(x						
2	ST-01-1492- BH01 (1.0m)	Jun 27, 2022		AUS Leachate	S22-JI00401	03 >	(x						
3	ST-01-1492- BH02 (0.4m)	Jun 27, 2022		AUS Leachate	S22-JI00401	04	(x						
4	ST-01-1492- BH03 (0.2m)	Jun 27, 2022		AUS Leachate			(x						
5	ST-01-1492- BH04 (0.4m)	Jun 27, 2022		AUS Leachate			(x						
6	ST-01-1492- BH08 (0.2m)	Jun 27, 2022		AUS Leachate				x						
7	ST-01-1492- BH11 (0.2m)	Jun 27, 2022		AUS Leachate				x						
8	ST-01-1492- SS02	Jun 27, 2022		AUS Leachate	S22-JI00401	⁰⁹ >	(x						

	inc	Eurofins Environme ABN: 50 005 085 521	nt Testing Australia	Pty Ltd						Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environm NZBN: 9429046024954	•
web: www.eurofins.com.au email: EnviroSales@eurofins.c		Melbourne 6 Monterey Road Dandenong South VIC 3175 Tel: +61 3 8564 5000 NATA# 1261 Site# 1254	Geelong 19/8 Lewalan Street Grovedale VIC 3216 Tel: +61 3 8564 5000 NATA# 1261 Site# 1254	Sydney 179 Magow Girraween NSW 2145 Tel: +61 2 9 NATA# 126	900 84	00	Canberra Unit 1,2 Dacre Street Mitchell ACT 2911 Tel: +61 2 6113 8091 7	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Tel: +61 7 3902 4600 NATA# 1261 Site# 2079	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Tel: +61 2 4968 8448 94 NATA# 1261 Site# 25079	Tel: +61 8 6253 4444	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 45 51 IANZ# 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290
Company Name: Address:	K2 Enviro S Suite 1A, L Gordon NSW 2768	evel 2, 802 Pacific H	lighway			Re Př	•	7245 49 669 559		Received: Due: Priority: Contact Name:	Jul 18, 2022 11:12 Jul 25, 2022 5 Day -INV'S & STMNTS	
Project Name: Project ID:		AL - 515 CROOKWE AL - ST-01-1492	ELL ROAD KINGSD	ALE					Euro	ofins Analytical Servic	ces Manager : Hann	ah Mawbey
	s	ample Detail			AUS Leaching Procedure	Chromium (speciated)						
					ure							
Sydney Laboratory -	NATA # 126'				JIFE	x						

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

enits		
mg/kg: milligrams per kilogram	mg/L: milligrams per litre	µg/L: micrograms per litre
ppm: parts per million	ppb: parts per billion	%: Percentage
org/100 mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100 mL: Most Probable Number of organisms per 100 millilitres

Terms

Terms	
APHA	American Public Health Association
COC	Chain of Custody
CP	Client Parent - QC was performed on samples pertaining to this report
CRM	Certified Reference Material (ISO17034) - reported as percent recovery.
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
LOR	Limit of Reporting.
LCS	Laboratory Control Sample - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
SRA	Sample Receipt Advice
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
твто	Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.
TCLP	Toxicity Characteristic Leaching Procedure
TEQ	Toxic Equivalency Quotient or Total Equivalence
QSM	US Department of Defense Quality Systems Manual Version 5.4
US EPA	United States Environmental Protection Agency
WA DWER	Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test							Acceptance Limits	Pass Limits	Qualifying Code		
Method Blank											
Heavy Metals											
Chromium		mg/L	< 0.05			0.05	Pass				
LCS - % Recovery											
Heavy Metals											
Chromium			%	104			80-120	Pass			
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code		
Spike - % Recovery											
Heavy Metals				Result 1							
Chromium	S22-JI0040102	CP	%	114			75-125	Pass			
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code		
Duplicate											
				Result 1	Result 2	RPD					
Chromium (hexavalent)	S22-JI0040105	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass			
Duplicate											
Heavy Metals				Result 1	Result 2	RPD					
Chromium	S22-JI0040109	CP	mg/L	< 0.05	< 0.05	<1	30%	Pass			

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Description

Code

C01 Leachate Fluid Key: 1 - pH 5.0; 2 - pH 2.9; 3 - pH 9.2; 4 - Reagent (DI) water; 5 - Client sample, 6 - other

Authorised by:

Quinn Raw Charl Du Preez Ryan Phillips Analytical Services Manager Senior Analyst-Metal Senior Analyst-Inorganic

Glenn Jackson General Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521									
Melbourne	Geelong	Sydney							
6 Monterey Road	19/8 Lewalan Street	179 Magowar Road							
Dandenong South	Grovedale	Girraween							
VIC 3175	VIC 3216	NSW 2145							
Tel: +61 3 8564 5000	Tel: +61 3 8564 5000	Tel: +61 2 9900 8400							
NATA# 1261 Site# 1254	NATA# 1261 Site# 1254	NATA# 1261 Site# 18217							

Canberra Brisbane Unit 1.2 Dacre Street 1/21 Smallwood Place Mitchell Murarrie ACT 2911 QLD 4172 Tel: +61 2 6113 8091 Tel: +61 7 3902 4600

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Tel: +61 2 4968 8448 NATA# 1261 Site# 20794 NATA# 1261 Site# 25079

ABN: 91 05 0159 898 Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370

www.eurofins.com.au

Eurofins ARL Pty Ltd Eurofins Environment Testing NZ Ltd NZBN: 9429046024954 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 45 51

IANZ# 1327

EnviroSales@eurofins.com

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290

Sample Receipt Advice

Company name:	K2 Enviro Solutions
Contact name:	-INV'S & STMNTS - Kannan Kaliappan
Project name:	ADDITIONAL - 515 CROOKWELL ROAD KINGSDALE
Project ID:	ADDITIONAL - ST-01-1492
Turnaround time:	5 Day
Date/Time received	Jul 18, 2022 11:12 AM
Eurofins reference	907245

Sample Information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table. 1
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace. J
- X Split sample sent to requested external lab.
- X Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Hannah Mawbey on phone : or by email: HannahMawbey@eurofins.com

Results will be delivered electronically via email to -INV'S & STMNTS - Kannan Kaliappan - admin@k2envirosolutions.com.au.

Global Leader - Results you can trust

AUSTRALIAN SAFER ENVIRONMENT & TECHNOLOGY PTY LTD

ABN 36 088 095 112

Our ref : ASET102523 / 105703 / 1 - 6 Your ref : ST-01-1492 – 515 Crookwell Road Kingsdale NSW2580 NATA Accreditation No: 14484

30 June 2022

K2 Consulting Group Suite 1A Level 2 802 Pacific Highway Gordon NSW 2072

Attn: Mr Kannan Kaliappan

Accredited for compliance with ISO/IEC 17025 - Testing.

Dear Kannan

Asbestos Identification

This report presents the results of six samples, forwarded by K2 Enviro Solutions on 30 June 2022, for analysis for asbestos.

1.Introduction:Six samples forwarded were examined and analysed for the presence of asbestos.

- 2. Methods : The samples were examined under a Stereo Microscope and selected fibres were analysed by Polarized Light Microscopy in conjunction with Dispersion Staining method (Australian Standard AS 4964 - 2004 and Safer Environment Method 1 as the supplementary work instruction) (Qualitative Analysis only).
- 3. Results : Sample No. 1. ASET102523 / 105703 / 1. ST-01-1492-BH01-ASB1 (0.2m). Approx dimensions 8.0 cm x 8.0 cm x 1.1 cm The sample consisted of a mixture of clayish sandy soil, stones, fragments of plastic and plant matter. No asbestos detected.

Sample No. 2. ASET102523 / 105703 / 2. ST-01-1492-BH03-ASB3 (0.2m). Approx dimensions 8.0 cm x 8.0 cm x 1.4 cm The sample consisted of a mixture of clayish sandy soil, organic fibres, stones, fragments of paint flakes, animal and plant matter. No asbestos detected.

Sample No. 3. ASET102523 / 105703 / 3. ST-01-1492-BH07-ASB7 (0.2m). Approx dimensions 8.0 cm x 8.0 cm x 0.9 cm The sample consisted of a mixture of clayish sandy soil, organic fibres, stones, fragments of sandstone, wood chips and plant matter. No asbestos detected.

Sample No. 4. ASET102523 / 105703 / 4. ST-01-1492-BH08-ASB8 (0.2m). Approx dimensions 8.0 cm x 8.0 cm x 1.0 cm The sample consisted of a mixture of clayish sandy soil, stones, fragments of soft fibrous material containing organic fibres, wood chips and plant matter. No asbestos detected.

Sample No. 5. ASET102523 / 105703 / 5. ST-01-1492-ASB-BR1. Approx dimensions 8.0 cm x 8.0 cm x 1.1 cm The sample consisted of a mixture of sandy soil, stones, fragments of sandstone and plant matter. No asbestos detected.

SUITE 710 / 90 GEORGE STREET, HORNSBY NSW 2077 – P.O. BOX 1644 HORNSBY WESTFIELD NSW 1635 PHONE: (02) 99872183 FAX: (02)99872151 EMAIL: info@ausset.com.au WEBSITE: www.Ausset.com.au

Sample No. 6. ASET102523 / 105703 / 6. ST-01-1492-PL-ASB (Rubbish Pile). Approx dimensions 6.0 cm x 4.1 cm x 0.5 cm The sample consisted of a fragment of a fibro plaster cement material containing organic fibres. No asbestos detected.

Reported by,

Mahen De Silva. BSc, MSc, Grad Dip (Occ Hyg) Occupational Hygienist / Approved Identifier. Approved Signatory

Accredited for compliance with ISO/IEC 17025 - Testing.

The results contained in this report relate only to the sample/s submitted for testing. Australian Safer Environment & Technology accepts no responsibility for whether or not the submitted sample/s is/are representative. Results indicating "No asbestos detected" indicates a reporting limit specified in AS4964 -2004 which is 0.1g/ Kg (0.01%). Any amounts detected at assumed lower level than that would be reported, however those assumed lower levels may be treated as "No asbestos detected" as specified and recommended by A4964-2004. Trace / respirable level asbestos will be reported only when detected and trace analysis have been performed on each sample as required by AS4964-2004. When loose asbestos fibres/ fibre bundles are detected and reported that means they are larger handpicked fibres/ fibre bundles, and they do not represent respirable fibres. Dust/soil samples are always subjected to trace analysis except where the amounts involved are extremely minute and trace analysis is not possible to be carried out. When trace analysis is not performed on dust samples it will be indicated in the report that trace analysis has not been carried out due to the volume of the sample being extremely minute.

K2 K2 CONSULTING GROUP

K2 K2 CONSULTING GR	OUP	CHAIN OF	CUSTO	DY	
LIENT: Alimaco Pty Ltd	URGENT		22		
FFICE:					
ROJECT NO: ST-01-1492 .	SAMPLED ON:	27.06.2022			18CA
DDRESS, 515 Crookwell Road, Kingsdale NSW 2580					CARA A
POLECT MANAGER: Kannan Kallappin CONTACT	PH 0449669559				
AMPLER Similar		RELINQUISHED BY Sirish Baniya	RECEIVED BY	RELINQUISHED BY:	RECEIVED BY:
OC emailed to lab? YES THEY Yes EDD FORM				Kn	
Riversar and the set of the set of the side of the sid	DATESTINE IN Go 2012 ATT 20 hrs	DATE TIME	DARDING	DATE/TIME:	
mail in vitte to that does no Pit a rundher and estate the Lated Rannan@k	2consultinggroup.com.au		1		20/6/22 10-45

ASETI02523/105703/1-6

COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL

	SAMPLE MATRIC SOLL VINYL/ DU	CONTAINER INFORMATION		-		Additional Information							
Sno	SAMOLE ID	DATE / TIME	MATRIX	CONTAINER INFORMATION	TOTAL CONTA NERS	Asbestos in soll (presence/absence)	Asbestos Cement Si met (presence / absence)	Asbestos in Vinyl (presence/absence)	Asbestos Dust (presence/absence)	Asbestos in Bitumen (present / absent)	Asbestos in insulation (Present / absent)	Asbestos in Material	or samples requiring eccorfic enalys etc.
	ST-01-1492-8H01-ASB1 (0.2m)	27.06.2022; 10:00 hrs	Soil	Zip Lock Bag	1	x							
	ST-01-1492-BH01-ASB1' (1.0m)	27.06.2022; 10:00 hrs	Soil	Zip Lock Bag	1	х							HOLD
10	ST-01-1492-BH02-ASB2 (0.2m)	27.06.2022; 10:00 hrs	Soil	Zip Lock Bag	1	х							HOLD
4	ST-01-1492-BH02-ASB2' (0.4m)	27.06.2022; 10:00 hrs	Soil	Zip Lock Bag	1	х							HOLD
	ST-01-1492-BH03-ASB3 (0.2m)	27.06.2022: 10:00 hrs	Soil	Zip Lock Bag	1	х							
	ST-01-1492-BH03-ASB3' (0.5m)	27.06.2022; 10:00 hrs	Soil	Zip Lock Bag	1	х							HOLD
	ST-01-1492-BH04-ASB4 (0.2m)	27.06.2022; 10:00 hrs	Soil	Zip Lock Bag	1	x							HOLD
8	ST-01-1492-8H04-ASB4' (0.4m)	27.06.2022; 10:00 hrs	Soil	Zip Lock Bag	1	X		5) E(ជាន	NV	<u>)</u> 22 (U	HOLD
	ST-01-1492-BH07-ASB7 (0.2m)	27.06.2022; 10:00 hrs	Soil	Zip Lock Bag	1	X			1	12			
10	ST-01-1492-BH07-ASB7 (0.4m)	27.06.2022; 10:00 hrs	Soil	Zip Lock Bag	1	x			3	0 10	N 202	2 9	HOLD
)1	ST-01-1492-BH08-ASB8 (0.2m)	27.06.2022; 10:00 hrs	Soil	Zip Lock Bag	1	x					1		
12	ST-01-1492-BH08-ASB8' (0.4m)	27.06.2022; 10:00 hrs	Soil	Zip Lock Bag	1	x			BY:		* ·····		HOLD
13	ST-01-1492-BH09-ASB9 (0.2m)	27.06.2022; 10:00 hrs	Soli	Zip Lock Bag	1	X							HOLD
14	ST-01-1492-BH10-ASB10 (0.2m)	27.06.2022; 10:00 hrs	Soil	Zip Lock Bag	1	X							HOLD
15	ST-01-1492-BH11-ASB11 (0.2m)	27.06.2022: 10:00 hrs	Soil	Zip Lock Bag	1	x			-				HOLD
)16	ST-01-1492-ASB-BR1	27.06.2022; 10:00 hrs	Soil	Zip Lock Bag	1	x							
17	ST-01-1492-SS01-ASB	27.06.2022; 10:00 hrs	Soil	Zip Lock Bag	1	x							HOLD
18	ST-01-1492-PL-ASB (Rubbish Pile)	27.06.2022; 10:00 hrs	FCS	Zip Lock Beg	1		х						

515 Crookwell Road, Kingsdale NSW 2580

Appendix VI

Pro-UCL study

	A B C	D E	F	G H I J K	L							
1		UCL Statis	tics for Unc	ensored Full Data Sets								
2	User Selected Options											
3	•	DrollCL 5 2 10/08/2022 /	-05-25 DM									
4	Date/Time of Computation ProUCL 5.2 10/08/2022 4:05:35 PM From File WorkSheet.xls											
5	Full Precision OFF											
6	Confidence Coefficient 95%											
7	Number of Bootstrap Operations 2000											
8		2000										
9 10												
-	Chromium (Total) UCL											
12												
13			General	Statistics								
14	Total	Number of Observations	20	Number of Distinct Observations	16							
15												
16		Minimum	24	Mean	115.2							
17		Maximum	250	Median	120							
18		SD	62.47	Std. Error of Mean	13.97							
19		Coefficient of Variation	0.542	Skewness	0.228							
20												
21			Normal (GOF Test								
22		napiro Wilk Test Statistic	0.959	Shapiro Wilk GOF Test								
23	1% Sh	apiro Wilk Critical Value	0.868	Data appear Normal at 1% Significance Level								
24		Lilliefors Test Statistic	0.108	Lilliefors GOF Test								
25	19	% Lilliefors Critical Value	0.223	Data appear Normal at 1% Significance Level								
26		Data appea	ar Normal at	1% Significance Level								
27												
28			suming Norr	nal Distribution								
29	95% Noi	rmal UCL		95% UCLs (Adjusted for Skewness)								
30		95% Student's-t UCL	139.3	95% Adjusted-CLT UCL (Chen-1995)	138.9							
31				95% Modified-t UCL (Johnson-1978)	139.4							
32			Commo	GOF Test								
33		A-D Test Statistic	0.497									
34												
35												
36												
37 38	Detected date on page Distributed at 5% Disrificance Level											
30 39												
40			Gamma	Statistics								
40		k hat (MLE)	2.856	k star (bias corrected MLE)	2.461							
41		Theta hat (MLE)	40.32	Theta star (bias corrected MLE)								
43		nu hat (MLE)	114.2	nu star (bias corrected)	98.43							
44	ML	E Mean (bias corrected)	115.2	MLE Sd (bias corrected)	73.41							
45				Approximate Chi Square Value (0.05)	76.54							
46	Adjust	ted Level of Significance	0.038	Adjusted Chi Square Value	75.02							
47		I		· I								
48		Ass	uming Gam	ma Distribution								
49	95% Ap	oproximate Gamma UCL	148.1	95% Adjusted Gamma UCL	151.1							
50												
51				GOF Test								
52		napiro Wilk Test Statistic	0.914	Shapiro Wilk Lognormal GOF Test								
53	10% Sh	apiro Wilk Critical Value	0.92	Data Not Lognormal at 10% Significance Level								
54		Lilliefors Test Statistic	0.181	Lilliefors Lognormal GOF Test								
55	109	6 Lilliefors Critical Value	0.176	Data Not Lognormal at 10% Significance Level								
56		Data Not Lo	gnormal at	10% Significance Level								

	А	В	С	D	E	F	G	Н	I	J	K	L		
57														
58	Lognormal Statistics Minimum of Logged Data 3.178 Mean of logged Data 4.561													
59		Minimum of Logged Data 3.178 Mean of logged Data												
60		Maximum of Logged Data 5.521 SD of logged Data												
61														
62							rmal Distrib	ution						
63		95% H-UCL 170.8 90% Chebyshev (MVUE) UCL									177.1			
64		95% Chebyshev (MVUE) UCL 203.3 97.5% Chebyshev (MVUE) UCL									239.8			
65		99% Chebyshev (MVUE) UCL 311.4												
66														
67		Nonparametric Distribution Free UCL Statistics												
68		Data appear to follow a Discernible Distribution												
69														
70							tribution Fre	e UCLs						
71		95% CLT UCL 138.1 95% BCA Bootstrap UCL								138				
72		95% Standard Bootstrap UCL 137.4 95% Bootstrap-t UCL								140.2				
73				5% Hall's Bo	•	139.6		137.8						
74				ebyshev(Me	,	157.1		176						
75			97.5% Ch	ebyshev(Me	an, Sd) UCL	202.4			99% Cł	nebyshev(Mea	an, Sd) UCL	254.1		
76														
77						Suggested	UCL to Use							
78				95% Stu	dent's-t UCL	139.3								
79														
80	Ν	Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.												
81		Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.												
82	Hov	wever, simu	lations result	s will not cov	er all Real W	/orld data se	ts; for additio	nal insight th	ie user may	want to consu	ult a statistici	an.		
83														